Open Access. Powered by Scholars. Published by Universities.®

Medical Genetics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Medical Genetics

A Three-Component Regulatory System Regulates Biofilm Maturation And Type Iii Secretion In Pseudomonas Aeruginosa, Sherry L. Kuchma, John P. Connolly, George A. O'Toole Feb 2005

A Three-Component Regulatory System Regulates Biofilm Maturation And Type Iii Secretion In Pseudomonas Aeruginosa, Sherry L. Kuchma, John P. Connolly, George A. O'Toole

Dartmouth Scholarship

Biofilms are structured communities found associated with a wide range of surfaces. Here we report the identification of a three-component regulatory system required for biofilm maturation by Pseudomonas aeruginosa strain PA14. A transposon mutation that altered biofilm formation in a 96-well dish assay originally defined this locus, which is comprised of genes for a putative sensor histidine kinase and two response regulators and has been designated sadARS. Nonpolar mutations in any of the sadARS genes result in biofilms with an altered mature structure but do not confer defects in growth or early biofilm formation, swimming, or twitching motility. After …


Endothelial-Specific Expression Of Caveolin-1 Impairs Microvascular Permeability And Angiogenesis, Philip M. Bauer, Jun Yu, Yan Chen, Reed Hickey, Pascal N. Bernatchez, Robin Looft-Wilson, Yan Huang, Frank Giordano, Radu V. Stan, William C. Sessa Jan 2005

Endothelial-Specific Expression Of Caveolin-1 Impairs Microvascular Permeability And Angiogenesis, Philip M. Bauer, Jun Yu, Yan Chen, Reed Hickey, Pascal N. Bernatchez, Robin Looft-Wilson, Yan Huang, Frank Giordano, Radu V. Stan, William C. Sessa

Dartmouth Scholarship

The functions of caveolae and/or caveolins in intact animals are beginning to be explored. Here, by using endothelial cell-specific transgenesis of the caveolin-1 (Cav-1) gene in mice, we show the critical role of Cav-1 in several postnatal vascular paradigms. First, increasing levels of Cav-1 do not increase caveolae number in the endothelium in vivo. Second, despite a lack of quantitative changes in organelle number, endothelial-specific expression of Cav-1 impairs endothelial nitric oxide synthase activation, endothelial barrier function, and angiogenic responses to exogenous VEGF and tissue ischemia. In addition, VEGF-mediated phosphorylation of Akt and its substrate, endothelial nitric oxide synthase, were …