Open Access. Powered by Scholars. Published by Universities.®

Medical Genetics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 4 of 4

Full-Text Articles in Medical Genetics

Epigenetic Pathogenesis Of Neurological Disorders In Utero And Considerations For Genetic Counseling, Lauren Juga Apr 2022

Epigenetic Pathogenesis Of Neurological Disorders In Utero And Considerations For Genetic Counseling, Lauren Juga

Senior Honors Theses

Epigenetic modifications are a major focus of study in the pathogenesis of many disorders regarding metabolism, aging, neurodevelopment, and neurodegeneration. Epigenetic mechanisms are present throughout life but are especially vital to guiding fetal development. The precise timing of gene activation and deactivation guides stem cell differentiation through each embryonic stage. After exposure to environmental stimuli, gene expression can be altered by transcription factors, resulting in observable phenotypes and even pathology. Here, the epigenetic mechanisms responsible for the pathogenesis of neurodevelopmental and neuropsychiatric disorders are explored in response to environmental perturbations in utero. The present goal is to identify correlations between …


Gene Expression Profiling In An Alzheimer's Disease Mouse Model, Matthew R. Dalton Apr 2016

Gene Expression Profiling In An Alzheimer's Disease Mouse Model, Matthew R. Dalton

Senior Honors Theses

Explaining precisely how Alzheimer’s disease (AD)—the world’s most common form of dementia—materializes in the human brain has proven to be one of the most elusive ends in modern medicine. Progressive memory loss, neurodegeneration, and the presence of abnormal protein aggregates of amyloid-beta (Aβ) and neurofibrillary tangles (NFT) characterize this disease. Genome sequencing provides researchers with the ability to better identify disease-related changes in gene expression, some of which may play a role in the initiation and progression toward the AD-like state. Intimate interactions between tissues have been observed in many diseases, particularly between the brain and blood. This analysis seeks …


Analysis Of Differential Mrna And Mirna Expression In An Alzheimer’S Disease Mouse Model, Amanda Hazy, Matthew Dalton Oct 2014

Analysis Of Differential Mrna And Mirna Expression In An Alzheimer’S Disease Mouse Model, Amanda Hazy, Matthew Dalton

Other Undergraduate Scholarship

Research has shown that changes in gene expression play a critical role in the development of Alzheimer’s Disease (AD). Our project will evaluate genome-wide RNA expression patterns from brain and blood in an AD mouse model. This analysis will provide insight regarding the mechanisms of AD pathology as well as determine a possible diagnostic tool utilizing RNA expression patterns found in the blood as biomarkers for AD.


Aβ Alters The Dna Methylation Status Of Cell-Fate Genes In An Alzheimer’S Disease Model, Gary D. Isaacs, Noor Taher, Courtney Mckenzie, Rebecca Garrett, Matthew Baker, Nena Fox Jan 2013

Aβ Alters The Dna Methylation Status Of Cell-Fate Genes In An Alzheimer’S Disease Model, Gary D. Isaacs, Noor Taher, Courtney Mckenzie, Rebecca Garrett, Matthew Baker, Nena Fox

Faculty Publications and Presentations

Alzheimer’s disease (AD) is characterized by neurofibrillary tangles and extracellular amyloid-β plaques (Aβ). Despite ongoing research, some ambiguity remains surrounding the role of Aβ in the pathogenesis of this neurodegenerative disease. While several studies have focused on the mutations associated with AD, our understanding of the epigenetic contributions to the disease remains less clear. To that end, we determined the changes in DNA methylation in differentiated human neurons with and without Aβ treatment. We isolated the DNA from neurons treated with Aβ or vehicle, and digested the two samples with either a methylation-sensitive (HpaII) or a methylation-insensitive (MspI) restriction endonuclease. …