Open Access. Powered by Scholars. Published by Universities.®

Medical Genetics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Medical Genetics

Distinct Phenotypes In Zebrafish Models Of Human Startle Disease, Lisa R. Ganser, Qing Yan, Victoria M. James, Robert Kozol, Maya Topf, Robert J. Harvey, Julia E. Dallman Dec 2013

Distinct Phenotypes In Zebrafish Models Of Human Startle Disease, Lisa R. Ganser, Qing Yan, Victoria M. James, Robert Kozol, Maya Topf, Robert J. Harvey, Julia E. Dallman

Faculty and Research Publications

Startle disease is an inherited neurological disorder that causes affected individuals to suffer noise- or touch-induced non-epileptic seizures, excessive muscle stiffness and neonatal apnea episodes. Mutations known to cause startle disease have been identified in glycine receptor subunit (GLRA1 and GLRB) and glycine transporter (SLC6A5) genes, which serve essential functions at glycinergic synapses. Despite the significant successes in identifying startle disease mutations, many idiopathic cases remain unresolved. Exome sequencing in these individuals will identify new candidate genes. To validate these candidate disease genes, zebrafish is an ideal choice due to rapid knockdown strategies, accessible embryonic stages, and stereotyped behaviors. The …


Aβ Alters The Dna Methylation Status Of Cell-Fate Genes In An Alzheimer’S Disease Model, Gary D. Isaacs, Noor Taher, Courtney Mckenzie, Rebecca Garrett, Matthew Baker, Nena Fox Jan 2013

Aβ Alters The Dna Methylation Status Of Cell-Fate Genes In An Alzheimer’S Disease Model, Gary D. Isaacs, Noor Taher, Courtney Mckenzie, Rebecca Garrett, Matthew Baker, Nena Fox

Faculty Publications and Presentations

Alzheimer’s disease (AD) is characterized by neurofibrillary tangles and extracellular amyloid-β plaques (Aβ). Despite ongoing research, some ambiguity remains surrounding the role of Aβ in the pathogenesis of this neurodegenerative disease. While several studies have focused on the mutations associated with AD, our understanding of the epigenetic contributions to the disease remains less clear. To that end, we determined the changes in DNA methylation in differentiated human neurons with and without Aβ treatment. We isolated the DNA from neurons treated with Aβ or vehicle, and digested the two samples with either a methylation-sensitive (HpaII) or a methylation-insensitive (MspI) restriction endonuclease. …