Open Access. Powered by Scholars. Published by Universities.®

Medical Cell Biology Commons

Open Access. Powered by Scholars. Published by Universities.®

Theses/Dissertations

2021

Discipline
Institution
Keyword
Publication

Articles 1 - 30 of 41

Full-Text Articles in Medical Cell Biology

Atrx Inactivation And Idh1-R132h Drive Preferential Sensitivity To Proton Vs. X-Ray Radiotherapy In Glioma Stem Cells, Ángel Adrián Garcés Dec 2021

Atrx Inactivation And Idh1-R132h Drive Preferential Sensitivity To Proton Vs. X-Ray Radiotherapy In Glioma Stem Cells, Ángel Adrián Garcés

Dissertations & Theses (Open Access)

Background: Glioma Stem Cells (GSCs) are self-renewable, treatment resistant cells in the glioma tumor mass known to promote tumor development. In contrast to traditional photon-based radiation therapy (XRT), proton radiation therapy (PRT) may induce more complex DNA damage and therefore might have the potential to eliminate GSCs. Although previous studies have individually linked IDH mutations, specifically IDH1R132H, and ATRX inactivating mutations to improved patient outcomes and suppressed DNA damage repair compared to their respective wild-types, the mechanisms by which these two genetic alterations interact in GSCs treated with PRT compared to XRT are currently unknown. We hypothesize that …


Characterizing And Overcoming Resistance To Aminomethylspectinomycins In Gram-Negative Bacteria, Nisha Das Dec 2021

Characterizing And Overcoming Resistance To Aminomethylspectinomycins In Gram-Negative Bacteria, Nisha Das

Theses and Dissertations (ETD)

Spectinomycin (SPC) is a broad-spectrum aminocyclitol antibiotic. Its use in agriculture has led to widespread resistance in enteric bacteria, necessitating the development of more effective analogs. Aminomethyl spectinomycins (amSPC) are modified spectinomycins with increased potency against many bacterial species. These species include Legionella pneumophila, which harbors a chromosomally encoded aminoglycoside modifying enzyme (AME). In this study, we follow up on this observation and examine the extent to which the amSPCs are substrates for AMEs through adenylation (ANTs) and phosphorylation (APH). APH(9)-Ia and ANT(3")(9) were expressed in E. coli BL21(DE3) and purified using the Ni-affinity chromatography. The ability of AMEs to …


The Effect Of Cancer Cachexia Progression On The Feeding Regulation Of Skeletal Muscle Protein Turnover, Brittany R. Franch Dec 2021

The Effect Of Cancer Cachexia Progression On The Feeding Regulation Of Skeletal Muscle Protein Turnover, Brittany R. Franch

Theses and Dissertations (ETD)

Cancer cachexia is defined as the unintentional loss of skeletal muscle mass with or without fat loss that cannot be reversed by conventional nutritional support. Cachexia occurs in ~20% of cancer patients. More specifically, 50% of lung cancer patients, the most common cancer worldwide, develop cachexia. Cachexia occurs most often in lung and gastrointestinal cancers, whereas breast and prostate have the lowest rate of cachexia. Cancer-induced cachexia disrupts skeletal muscle protein turnover (decreasing protein synthesis and increasing protein degradation). Skeletal muscle’s capacity for protein synthesis is highly sensitive to local and systemic stimuli that are controlled by mTORC1 and AMPK …


Differentiating The Mechanistic Role And Chemotherapeutic Potential Of Src And Podoplanin In Oncogenic Transformation, Edward P. Retzbach Dec 2021

Differentiating The Mechanistic Role And Chemotherapeutic Potential Of Src And Podoplanin In Oncogenic Transformation, Edward P. Retzbach

Graduate School of Biomedical Sciences Theses and Dissertations

There were an estimated 20 million new cancer cases worldwide in 2020, resulting in nearly 1000 deaths per hour [1]. Oral cancer exemplifies the difficulties of treating cancer patients. The first line for oral cancer treatment is surgery and radiation that can lead to patient disfigurement and decreased quality of life in cancer survivors [2-4]. Though there have been many developments in chemotherapy in the last 30 years, the 50% mortality rate associated with oral cancer has not changed [4, 5]. Longitudinal studies that track survival rates in oral cancer patients demonstrate a 3-fold reduction in patient deaths when patients …


Lgr5 Regulation Of Stat3 Signaling And Drug Resistance In Colorectal Cancer, Tressie Posey, Tressie Alexandra Posey Dec 2021

Lgr5 Regulation Of Stat3 Signaling And Drug Resistance In Colorectal Cancer, Tressie Posey, Tressie Alexandra Posey

Dissertations & Theses (Open Access)

LGR5 Regulation of STAT3 Signaling and Drug Resistance in Colorectal Cancer

Tressie Alexandra Capri Posey B.S.

Advisory Professor: Kendra Carmon, Ph.D.

The greatest difficulty in treating colorectal cancer (CRC) is the development of drug resistance which leads to relapse after treatment and progression to metastasis. Cancer stem cells (CSCs) are believed to drive relapse because of their capacity to self-renew, acquire resistance mechanisms, and differentiate promoting tumor growth and heterogeneity. Leucine-rich repeat-containing G protein-coupled receptor 5 (LGR5), is a bona-fide marker of CSCs and has been considered a viable target for CSC specific therapeutic development. While we showed targeting LGR5 …


Identifying The Molecular Cause Of Extreme Endoplasmic Reticulum Dilation In Pediatric Osteosarcoma And Its Relationship To The Disease, Rachael Wood Dec 2021

Identifying The Molecular Cause Of Extreme Endoplasmic Reticulum Dilation In Pediatric Osteosarcoma And Its Relationship To The Disease, Rachael Wood

Theses and Dissertations (ETD)

Pediatric osteosarcoma tumors are characterized by an unusual abundance of grossly dilated endoplasmic reticulum and an immense genomic instability that has complicated identifying new effective molecular therapeutic targets. Here we report a novel molecular signature that encompasses the majority of 108 patient tumor samples, PDXs and osteosarcoma cell lines. These tumors exhibit reduced expression of four critical COPII vesicle proteins that has resulted in the accumulation of procollagen-I protein within ‘hallmark’ dilated ER. Using CRISPR activation technology, increased expression of only SAR1A and SEC24D to physiologically normal levels was sufficient to restore both collagen-I secretion and resolve dilated ER morphology …


Mechanisms Underlying Enhanced Bone Marrow Adipogenesis In Diabetes, Jina J.Y. Kum Nov 2021

Mechanisms Underlying Enhanced Bone Marrow Adipogenesis In Diabetes, Jina J.Y. Kum

Electronic Thesis and Dissertation Repository

Morbidity and mortality associated with diabetes are due to secondary vascular complications that include both micro- and macro-vascular organ dysfunctions. Our recent studies show that vascular dysfunction and inadequate vessel repair in diabetes may potentially be due to impaired vasculogenesis (de novo vessel formation). Specifically, we have shown that diabetes enhances adipogenesis in the bone marrow and reduces the number of marrow-resident vascular regenerative stem cells. In this study, I have determined the mechanisms of deleterious bone marrow adipogenesis, which may alter the cellular composition of the marrow and lead to the depletion of vascular regenerative stem cells.

My …


The Molecular Mechanisms Of Estrogen Receptor Α On Two Single Nucleotide Polymorphisms To Regulate Wnt Signaling In Osteoblasts, Sarocha Suthon Nov 2021

The Molecular Mechanisms Of Estrogen Receptor Α On Two Single Nucleotide Polymorphisms To Regulate Wnt Signaling In Osteoblasts, Sarocha Suthon

Theses and Dissertations (ETD)

Osteoporosis is the most common bone metabolic disorder, affecting over 200 million people globally. It is characterized by bone mass depletion and microarchitectural deterioration, leading to bone fragility and susceptibility to bone fracture. Genetic factors, estrogen deficiency, and dysregulation of the WNT signaling pathway contribute to the development of this disease. Genome-wide association studies have predicted that the single nucleotide polymorphisms (SNPs) rs2887571 and rs9921222 associate with low bone mass, but the mechanism of these SNPs has remained unknown. Analysis of osteoblasts from 112 different joint replacement patients reveals that the genotype of rs2887571 correlates with WNT5B expression, and the …


Advancing Rna Virus Discovery And Biology With Whole Genome Sequencing, Mariah Katherine Taylor Nov 2021

Advancing Rna Virus Discovery And Biology With Whole Genome Sequencing, Mariah Katherine Taylor

Theses and Dissertations (ETD)

Two RNA virus families that pose a threat to human and animal health are Hantaviridae and Coronaviridae. These RNA viruses which originate in wildlife continue and will continue to cause disease, and hence, it is critical that scientific research define the mechanisms as to how these viruses spillover and adapt to new hosts to become endemic. One gap in our ability to define these mechanisms is the lack of whole genome sequences for many of these viruses. To address this specific gap, I developed a versatile amplicon-based whole-genome sequencing (WGS) approach to identify viral genomes of hantaviruses and severe acute …


Role Of Smad2 And Smad3 On Adipose Tissue Development And Function, Roshan Kumari Nov 2021

Role Of Smad2 And Smad3 On Adipose Tissue Development And Function, Roshan Kumari

Theses and Dissertations (ETD)

Introduction: Obesity and its associated metabolic syndrome are major medical problems worldwide including United States. Adipose tissue is the primary site of energy storage, playing important roles in health. Adipose tissue also has other critical functions, producing adipocytokines and contributing to normal nutrient metabolism, which in turn play important roles in satiety, inflammation, and total energy homeostasis. Activin A and activin B play important roles in maintaining body composition and energy homeostasis. This dissertation highlights the role of activin/SMADs signaling in adipose tissue development, function, and maintenance.

SMAD2/3 proteins are downstream mediators of transforming growth factor-β (TGFβ) family signaling, including …


Understanding The Effect Of Dietary Palmitic Acid On Glycolysis During Innate Immune Memory In Macrophages, Khaleda A. Aqaei Oct 2021

Understanding The Effect Of Dietary Palmitic Acid On Glycolysis During Innate Immune Memory In Macrophages, Khaleda A. Aqaei

University Honors Theses

Trained immunity is long-term innate immune memory induced by a primary stimulus, which leads to hyper-inflammation upon secondary stimulation with a homologous or heterologous ligand. Trained immunity is mediated by epigenetic and metabolic reprogramming of the target cell and leads to modification of gene expression and cellular function. Classically, trained immunity is initiated by β-glucans, an inflammatory molecule found on the exterior of fungal species. Interestingly, our lab has recently described that dietary fatty acids can initiate trained immunity, working through similar pathways as β-glucans. Specifically, our data show that a pre-treatment with a specific dietary saturated fatty acid (SFA), …


Clinically Relevant Dosage Of Vancomycin Does Not Negatively Impact Periosteum Derived Osteoblast Precursor Cellular Functions, Alexis Hernandez Sep 2021

Clinically Relevant Dosage Of Vancomycin Does Not Negatively Impact Periosteum Derived Osteoblast Precursor Cellular Functions, Alexis Hernandez

Seton Hall University Dissertations and Theses (ETDs)

Surgical site infections (SSI) can develop post-operatively and carry significant clinical and financial implications. SSI can carry a cost of up to $30,000 per case, as well as an estimated 6 day longer hospitalization. Patients with Type II Diabetes (DM) have an increased susceptibility to infection and suffer from poor bone healing overall. Therefore, diabetic patients who have undergone orthopedic surgery risk both an increased chance of developing an SSI as well as suboptimal bone healing. Vancomycin and other antibiotics have traditionally been used prophylactically to prevent infection, however the effect of vancomycin on bone healing in a diabetic population …


Gene Expression Profiling Of Mapk Pathway Inhibitor Resistance In Cutaneous Melanoma: Can Bioinformatics Be Used To Select Better Melanoma Cell Lines?, Stephen Luebker Aug 2021

Gene Expression Profiling Of Mapk Pathway Inhibitor Resistance In Cutaneous Melanoma: Can Bioinformatics Be Used To Select Better Melanoma Cell Lines?, Stephen Luebker

Theses & Dissertations

Melanoma is the deadliest form of skin cancer, and incidence has continued to increase. Half of all melanomas have a BRAF V600E mutation and respond to MAPK pathway inhibitors, including BRAF inhibitor therapy or BRAF/MEK inhibitor combination therapy, but nearly all patients develop treatment resistance. Melanoma cell lines produce variable results as models of MAPK pathway inhibitor resistance. To better understand how the genomic similarity of a melanoma cell line to patient-derived tumors affects resistance mechanisms, differences in DNA mutations and copy-number alterations were compared between melanoma cell lines profiled by the Cancer Cell Line Encyclopedia and cutaneous melanoma tumors …


Erythrokeratodermia Variabilis Et Progressiva (Ekvp) Linked Cx30.3 Mutants Can Be Selectively Rescued By Co-Expression Of Wildtype Keratinocyte Connexins, Rhett O. Figliuzzi Aug 2021

Erythrokeratodermia Variabilis Et Progressiva (Ekvp) Linked Cx30.3 Mutants Can Be Selectively Rescued By Co-Expression Of Wildtype Keratinocyte Connexins, Rhett O. Figliuzzi

Electronic Thesis and Dissertation Repository

Connexin 30.3 (Cx30.3) is a β-connexin encoded by GJB4 that is key in epidermal homeostasis. Eleven mutations to the GJB4 are linked to an autosomal dominant skin disease called erythrokeratodermia variabilis et progressiva (EKVP). These mutations remain largely uncharacterized, limiting therapeutic options. In this study, we characterize the expression and functional status of three EKVP-linked Cx30.3 mutants, G12D, T85P and F189Y in rat epidermal keratinocytes. We found that EKVP-linked Cx30.3 mutants were not functional due to their retention in the endoplasmic reticulum (ER), but did not upregulate BiP, an indicator of ER stress. Sub-physiological incubation and chemical chaperones (such as …


Autophagy Regulation By Lipid Factors With Implications For Parkinson's Disease, Alejandro Soto-Avellaneda Aug 2021

Autophagy Regulation By Lipid Factors With Implications For Parkinson's Disease, Alejandro Soto-Avellaneda

Boise State University Theses and Dissertations

Parkinson’s disease is the second most common neurodegenerative disorder. It is characterized by the death of dopaminergic neurons in the substantia nigra and a series of debilitating motor symptoms. Macroautophagy (hereafter referred to as autophagy) is a cellular process by which cells degrade proteins, lipids, organelles or dysfunctional components. Autophagy is thought to play an important role in Parkinson’s disease, because it is the only cellular process known to remove large protein aggregates, such as those seen in Parkinson’s disease pathology. Historically, a large body of work has focused on reporting on protein effectors of autophagy, and regulation of autophagy …


Investigations In The Cellular And Molecular Biology Of Human Airway Mucociliary Tissue, Vincent Manna Aug 2021

Investigations In The Cellular And Molecular Biology Of Human Airway Mucociliary Tissue, Vincent Manna

Graduate School of Biomedical Sciences Theses and Dissertations

Our laboratory has integrated the use of a human-derived, in vitro model of airway mucociliary tissue. We isolate human nasal epithelial cells (HNECs) from the nasal mucociliary tissue of donors with a small brush and expand the airway progenitor cells in culture. The HNECs are then seeded onto semi-permeable transwell inserts. The inserts are in contact with the media in the lower chamber but don’t contain media in the upper chamber therefore the cells are exposed to the air while drawing nutrients from the media below, this is called the Air-Liquid Interface (ALI). HNECs cultured at the ALI initiate a …


Modulating Immunometabolism To Improve The Activity Of Car-Nk Cells Targeting Cd70 In Renal Cell Carcinoma, Hind Rafei Aug 2021

Modulating Immunometabolism To Improve The Activity Of Car-Nk Cells Targeting Cd70 In Renal Cell Carcinoma, Hind Rafei

Dissertations & Theses (Open Access)

Despite the approval of several therapies for metastatic clear cell renal cell carcinoma (ccRCC), disease resistance and relapse are common, and therapies with novel mechanisms of action are urgently needed. Chimeric antigen receptor (CAR) T-cell therapy has shown remarkable responses in hematologic malignancies, but many obstacles hinder success in solid tumors including the paucity of highly specific targets and the hostility of the tumor microenvironment (TME). Moreover, the limitations of generating an autologous cell product, such as cost of manufacture, and the challenges of toxicity with CAR-T cells highlight the need to develop new cell therapy products that are at …


Nucleotide P2y₂ Receptor-Dependent Leukocyte-Endothelial Interaction, Spencer E. Thomas Aug 2021

Nucleotide P2y₂ Receptor-Dependent Leukocyte-Endothelial Interaction, Spencer E. Thomas

MSU Graduate Theses

Extracellular nucleotides (ATP, UTP) released from cells act on nucleotide receptors to promote vascular inflammation. Increased leukocyte-endothelial interaction is a hallmark of vascular inflammation. The nucleotide P2Y₂ receptor (P2Y₂R), activated by extracellular ATP≈UTP, plays a role in cardiovascular homeostasis and immune regulation. Moreover, accumulating evidence from studies in vitro and in vivo models have implicated the P2Y₂R in the inflammatory response significantly contributing to the progression and pathogenesis of asthma, atherosclerosis, sepsis, and ischemia. I hypothesized that P2Y₂R activation by UTP, an agonist of the receptor, increased leukocyte rolling and adhesion in the microvasculature from baseline. To test the hypothesis, …


Vascular Disease Pathogenesis In Smooth Muscle Dysfunction Syndrome And Majewski Osteodysplastic Primordial Dwarfism Type Ii, Jamie Wright Aug 2021

Vascular Disease Pathogenesis In Smooth Muscle Dysfunction Syndrome And Majewski Osteodysplastic Primordial Dwarfism Type Ii, Jamie Wright

Dissertations & Theses (Open Access)

Vascular diseases are a leading cause of morbidity and mortality world-wide. Understanding their pathogenesis is crucial to better diagnosis and management of these life-threatening conditions. Through the study of rare mutations that lead to early onset and severe vascular diseases, we can elucidate underlying mechanisms for vascular disease pathogenesis and develop better treatments to prevent and manage more common causes of vascular diseases. In this study we look at two rare diseases that lead to severe vascular phenotypes, Smooth Muscle Dysfunction Syndrome (SMDS) and Majewski Osteodysplastic Primordial Dwarfism Type II (MOPDII). SMDS is a rare condition due to pathogenic variants …


Delineating The Skeletal Muscle-Microvessel Regeneration Program After Ischemic Injury, Jason J. Lee Jul 2021

Delineating The Skeletal Muscle-Microvessel Regeneration Program After Ischemic Injury, Jason J. Lee

Electronic Thesis and Dissertation Repository

Understanding the cellular processes involved in skeletal muscle regeneration after damage is critical to advancing translational efforts toward the development of targeted therapeutics. The purpose of this thesis was to ascertain the dynamic interplay between regenerating muscle and regenerating blood vessels after ischemic injury.

First, using a novel systematic investigation of a widely used preclinical mouse model of limb ischemia, I generated a detailed atlas of muscle injury zones and angiogenesis zones in C57BL/6 mice subjected to femoral artery excision. This uncovered previously unrecognized regional variability and an exclusive relationship between angiogenesis and actively regenerating muscle zones. Then, an unbiased, …


Roles And Regulation Of Satellite Cells In Skeletal Muscle Regeneration, Sydney Vlasman Jun 2021

Roles And Regulation Of Satellite Cells In Skeletal Muscle Regeneration, Sydney Vlasman

University Honors Theses

Skeletal muscle has an innate ability to self-regenerate in response to certain stimuli. In the case of trauma, muscle resident stem cells are required to meet the regenerative needs of the tissue. These resident stem cells, called satellite cells (SCs), are crucial in the regenerative process following injury; understanding the major factors which regulate satellite cell activity can provide valuable insight for regenerative medicine. The ability to implement and properly activate satellite cells has immense potential in the treatment of conditions including trauma, degenerative disorders, and age-related sarcopenia. This review will discuss the current understanding of satellite cell-mediated regeneration and …


Search For Palladin, An Actin-Associated Protein, In Pig Retinal Pigmented Epithelium And Its Role In Epithelial-Mesenchymal Transition, Katrina Powell May 2021

Search For Palladin, An Actin-Associated Protein, In Pig Retinal Pigmented Epithelium And Its Role In Epithelial-Mesenchymal Transition, Katrina Powell

Undergraduate Theses

This study investigates the expression of Palladin, a phosphoprotein product of the PALLD gene, in the retinal pigmented epithelium (RPE). Palladin is an actin cross-linking protein and plays a role in cell adhesion and motility. Published reports have demonstrated that a down regulation of Palladin in colon cancer cells results in a reorganization of the actin cytoskeleton, causing the cells to lose their typical shape, become proliferative and migratory. This process is otherwise known as epithelial-mesenchymal transition (EMT). A similar EMT phenomenon is observed when the RPE is exposed to the vitreous humor in patients with proliferative vitreoretinopathy (PVR). In …


The Role Of Vgll4 And Mark2-Hdac Axis In Mitosis And Cancer, Yongji Zeng May 2021

The Role Of Vgll4 And Mark2-Hdac Axis In Mitosis And Cancer, Yongji Zeng

Theses & Dissertations

The Hippo pathway is an evolutionarily conserved signaling pathway that plays important roles in stem cell biology, tissue homeostasis, and cancer development. The Hippo core signaling pathway features a kinase cascade consisting of mammalian sterile-20 like protein 1/2 (Mst1/2) and large tumor suppressor 1/2 (Lats1/2). Inactivation of the Hippo pathway is correlated with the promotion of proliferation and anti-apoptosis through activation of the transcriptional co-activator Yes-associated protein (YAP). YAP functions through binding with TEA-domain transcription factors (TEAD1–4) to activate target genes.

Vestigial-like 4 (Vgll4) functions as a transcriptional co-repressor in the Hippo-Yes associated protein (YAP) pathway. Vgll4 inhibits cell proliferation …


Trna Regulation In Humans: The Cellular Effect Of A Pathological Hars Y454s Mutation, Rosan Kenana Apr 2021

Trna Regulation In Humans: The Cellular Effect Of A Pathological Hars Y454s Mutation, Rosan Kenana

Electronic Thesis and Dissertation Repository

tRNAs are the adapter molecules involved in translating the genetic code into functional protein in a living cell. tRNAs are charged with their cognate amino acids - by aminoacyl-tRNA synthetases (aaRS or ARS) - which are then transferred to a growing peptide in a process called mRNA translation. The efficiency of translation is dependent on the ratio of ARS enzymes to their cognate tRNAs and the availability of correctly amino acylated tRNAs. Disruptions of this process, caused by mutations in ARS genes, in particular, have been linked to complex inherited diseases. USH3B syndrome, a recessively inherited disorder among consanguineous families …


Development Of An Immunoblot To Detect Human Antibodies Against Sars-Cov-2 Virus Proteins, Shivum Desai Apr 2021

Development Of An Immunoblot To Detect Human Antibodies Against Sars-Cov-2 Virus Proteins, Shivum Desai

Honors Theses

Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) is a virus that infects cells in the lungs, nasal passages, and intestines via the ACE2 receptors of the host, and leads to the coronavirus disease (COVID-19). Since the occurrence of the pandemic in December 2019, there have been 114 million cases worldwide in which 2.5 million lives have unfortunately been taken away.

Being diagnosed with a past infection stems questions among those that have tested positive through antibody testing. The problem here is that patients were notified that they have antibodies resulting from a SARS-CoV-2 infection, but in fact they may not …


The Heme-Regulated Inhibitor Pathway Modulates Susceptibility Of Poor Prognosis B-Lineage Acute Leukemia To Bh3-Mimetics, Kaitlyn Hill Smith Apr 2021

The Heme-Regulated Inhibitor Pathway Modulates Susceptibility Of Poor Prognosis B-Lineage Acute Leukemia To Bh3-Mimetics, Kaitlyn Hill Smith

Theses and Dissertations (ETD)

Anti-apoptotic MCL1 is one of the most frequently amplified genes in human cancers and its elevated expression confers resistance to many therapeutics including the BH3-mimetic agents ABT-199 and ABT-263. The anti-malarial, dihydroartemisinin (DHA) translationally represses MCL-1 and synergizes with BH3-mimetics. To explore how DHA represses MCL-1, a genome-wide CRISPR screen identified that loss of genes in the heme synthesis pathway renders mouse BCR-ABL+ B-ALL cells resistant to DHA-induced death. Mechanistically, DHA disrupts the interaction between heme and the eIF2α kinase heme regulated inhibitor (HRI) triggering the integrated stress response. Genetic ablation of Eif2ak1, which encodes HRI, blocks MCL-1 repression in …


Long-Term Impacts Of Acute Stressor Exposure On Locus Coeruleus Function And Anxiety-Like Behavior In Rats, Olga Borodovitsyna Apr 2021

Long-Term Impacts Of Acute Stressor Exposure On Locus Coeruleus Function And Anxiety-Like Behavior In Rats, Olga Borodovitsyna

Graduate School of Biomedical Sciences Theses and Dissertations

Stress is a physiological state characterized by behavioral arousal that occurs during exposure to harmful or threatening stimuli, and usually facilitates an adaptive behavioral response. The persistence of stress sometimes causes it to become maladaptive, potentially contributing to disease development, including physiological complications with altered neuroendocrine signaling and impaired function of organ systems, and psychological conditions including depression and anxiety. Anxiety disorders in particular are associated with a history of stress and are the most common class of mental disorders, with a lifetime prevalence of 33.7% in the general population. The locus coeruleus (LC) is a major node in the …


A High-Throughput Approach To Characterizing Arv1 On The Regulation Of Lipid Homeostasis Uncovers A Novel Interaction With Epidermal Growth Factor Receptor, Nicholas Anthony Wachowski Apr 2021

A High-Throughput Approach To Characterizing Arv1 On The Regulation Of Lipid Homeostasis Uncovers A Novel Interaction With Epidermal Growth Factor Receptor, Nicholas Anthony Wachowski

Graduate School of Biomedical Sciences Theses and Dissertations

Acyl-CoA cholesterol acyl transferase related enzyme-2 required for viability 1 (ARV1) was first recognized in Saccharomyces cerevisiae in a study done in 2000 by Tinkelenberg et al. In yeast, the deletion of ARV1 results in numerous defects including abnormal sterol trafficking [1], the reduction of sphingolipid metabolism [2], synthesis of glycosylphosphatidylinositol (GPI) anchor [3], ER stress [4], and hypersensitivity of fatty acids leading to lipoapoptosis [5]. Arv1 germline deletion in mice displayed a lean phenotype with increased energy [6]. In humans, ARV1 mutations lead to epileptic encephalopathy [7].

Non-alcoholic fatty liver disease (NAFLD) consists of simple steatosis to non-alcoholic steatohepatitis …


Therapeutic Potential Of Trp Channels In The Targeting Of Rheumatoid Arthritis Synovial Fibroblasts, Brittany Isabella Schwam Apr 2021

Therapeutic Potential Of Trp Channels In The Targeting Of Rheumatoid Arthritis Synovial Fibroblasts, Brittany Isabella Schwam

Theses and Dissertations (ETD)

Rheumatoid arthritis is a chronic inflammatory disease primarily affecting the synovium, articular cartilage, and bone within a joint, but it is a unique form of arthritis wherein effects are systemic. The cause of this autoimmune disease remains unknown, but there are many environmental and genetic factors that play into susceptibility. Research is still far from drug-free remission despite great advancements over the past few decades. The majority of therapies developed rely on immunosuppressant or immunomodulator molecules and come with risk of infection, high costs, and toxic, uncontrolled side effects. Those diagnosed maintain a significant unmet need for targeted therapies.

There …


Functional Role Of Dream And Dyrk1a In High-Grade Serous Ovarian Cancer Cell Dormancy, Pirunthan Perampalam Mar 2021

Functional Role Of Dream And Dyrk1a In High-Grade Serous Ovarian Cancer Cell Dormancy, Pirunthan Perampalam

Electronic Thesis and Dissertation Repository

High-grade serous ovarian cancer (HGSOC) is the most common form of ovarian cancer. The majority of women are disproportionately diagnosed at an advanced stage (stage III-IV) of the disease when tumours have progressed beyond the ovaries or fallopian tubes and into the peritoneal cavity. Survival rates at late-stage are as low as 25% and chemoresistant disease recurrence is common, affecting up to 90% of patients. Multicellular clusters called spheroids contribute to dormancy, chemoresistance, and metastases and are a major challenge to treatment of HGSOC. Spheroid cells undergo reversible quiescence to evade chemotherapy in a process mediated by the mammalian DREAM …