Open Access. Powered by Scholars. Published by Universities.®

Medical Cell Biology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 7 of 7

Full-Text Articles in Medical Cell Biology

Proteomic Profiling Of Serum Derived Exosomes From Prostate Cancer Patients, David Turay Oct 2018

Proteomic Profiling Of Serum Derived Exosomes From Prostate Cancer Patients, David Turay

David Turay, MD

Touted among the major achievements in the diagnosis and management of Prostate cancer (PCa) in the past few decades has been, the dramatic decline of men with advanced/metastatic PCa at diagnosis coupled with a significant improvement ( >90%) in the five and ten year survival rates of the disease. Non-palpable PCa (potentially clinically treatable disease) now accounts for 70-80% of all newly diagnosed cases of PCa. Preceding these changes by about a decade was the introduction of Prostatic Specific Antigen (PSA) into clinical practice; first as biomarker for monitoring response to therapy and subsequently as a complementary screening tool. It …


N-Terminal Domain Of Human Uracil Dna Glycosylase (Hung2) Promotes Targeting To Uracil Sites Adjacent To Ssdna-Dsdna Junctions, Brian P Weiser, Gaddiel Rodriguez, Philip A Cole, James T Stivers Aug 2018

N-Terminal Domain Of Human Uracil Dna Glycosylase (Hung2) Promotes Targeting To Uracil Sites Adjacent To Ssdna-Dsdna Junctions, Brian P Weiser, Gaddiel Rodriguez, Philip A Cole, James T Stivers

Rowan-Virtua School of Osteopathic Medicine Faculty Scholarship

The N-terminal domain (NTD) of nuclear human uracil DNA glycosylase (hUNG2) assists in targeting hUNG2 to replication forks through specific interactions with replication protein A (RPA). Here, we explored hUNG2 activity in the presence and absence of RPA using substrates with ssDNA-dsDNA junctions that mimic structural features of the replication fork and transcriptional R-loops. We find that when RPA is tightly bound to the ssDNA overhang of junction DNA substrates, base excision by hUNG2 is strongly biased toward uracils located 21 bp or less from the ssDNA-dsDNA junction. In the absence of RPA, hUNG2 still showed an 8-fold excision bias …


The Role Of Developmental Timing Regulators In Progenitor Proliferation And Cell Fate Specification During Mammalian Neurogenesis, Jennifer S. Romer-Seibert Aug 2018

The Role Of Developmental Timing Regulators In Progenitor Proliferation And Cell Fate Specification During Mammalian Neurogenesis, Jennifer S. Romer-Seibert

Graduate School of Biomedical Sciences Theses and Dissertations

Developmental timing is a key aspect of tissue and organ formation in which distinct cell types are generated through a series of steps from common progenitors. These progenitors undergo specific changes in gene expression that signifies both a distinct progenitor type and developmental time point that thereby specifies a particular cell fate at that stage of development. The nervous system is an important setting for understanding developmental timing because different cell types are produced in a certain order and the switch from stem cells to progenitors requires precise timing and regulation. Notable examples of such regulatory molecules include the RNA-binding …


Inhibition Of Ribosome Biogenesis Through Genetic And Chemical Approaches, Leonid Anikin Aug 2018

Inhibition Of Ribosome Biogenesis Through Genetic And Chemical Approaches, Leonid Anikin

Graduate School of Biomedical Sciences Theses and Dissertations

In order to maintain the ability to generate proteins, proliferating cells must continuously generate ribosomes, designating up to 80% of their energy to ribosome biogenesis (RBG). RBG involves transcription of rDNA by RNA polymerases I (Pol I) and III (Pol III), expression of approximately 80 ribosomal proteins, and assembly of these components in a process referred to as ribosome maturation. During maturation, the Pol I transcribed 47S pre-rRNA undergoes a number of processing events, while simultaneously interacting with processing factors and ribosomal proteins that drive pre-ribosome assembly. Inhibition of RBG has become one of the pursued targets for cancer therapy …


Till Death Do Us Part: The Marriage Of Autophagy And Apoptosis., Katrina F Cooper May 2018

Till Death Do Us Part: The Marriage Of Autophagy And Apoptosis., Katrina F Cooper

Rowan-Virtua School of Osteopathic Medicine Faculty Scholarship

Autophagy is a widely conserved catabolic process that is necessary for maintaining cellular homeostasis under normal physiological conditions and driving the cell to switch back to this status quo under times of starvation, hypoxia, and oxidative stress. The potential similarities and differences between basal autophagy and stimulus-induced autophagy are still largely unknown. Both act by clearing aberrant or unnecessary cytoplasmic material, such as misfolded proteins, supernumerary and defective organelles. The relationship between reactive oxygen species (ROS) and autophagy is complex. Cellular ROS is predominantly derived from mitochondria. Autophagy is triggered by this event, and by clearing the defective organelles effectively, …


Muc4 Based Immunotherapy For Pancreatic Cancer, Kasturi Banerjee May 2018

Muc4 Based Immunotherapy For Pancreatic Cancer, Kasturi Banerjee

Theses & Dissertations

Pancreatic Cancer (PC) is a lethal disease claiming approximately 45000 lives in the US in 2018, and it establishes an elaborate immunosuppressive tumor microenvironment that aids in disease pathogenesis. Immunotherapy has emerged as a strategy to target tumor cells by reprogramming patient’s immune system. Challenges present in PC immunotherapy are: i) identifying a tumor-associated antigen that could be targeted, ii) identifying adjuvants that could efficiently deliver antigens, iii) eliciting robust anti-tumor responses and iv) overcoming peripheral tolerance and immunosuppression elicited by the tumor.

Firstly, we detected circulating autoantibodies to MUC4 present in PC patients and observed that IgM autoantibodies to …


A Functional Signature Ontology (Fusion) Screen Detects An Ampk Inhibitor With Selective Toxicity Toward Human Colon Tumor Cells, Binita Das, Beth K. Neilsen, Kurt W. Fisher, Drew Gehring, Youcai Hu, Deanna J. Volle, Hyun Seok Kim, Jamie L. Mccall, David L. Kelly, John B. Macmillian, Michael A. White, Robert E. Lewis Jan 2018

A Functional Signature Ontology (Fusion) Screen Detects An Ampk Inhibitor With Selective Toxicity Toward Human Colon Tumor Cells, Binita Das, Beth K. Neilsen, Kurt W. Fisher, Drew Gehring, Youcai Hu, Deanna J. Volle, Hyun Seok Kim, Jamie L. Mccall, David L. Kelly, John B. Macmillian, Michael A. White, Robert E. Lewis

Faculty & Staff Scholarship

AMPK is a serine threonine kinase composed of a heterotrimer of a catalytic, kinase-containing α and regulatory β and γ subunits. Here we show that individual AMPK subunit expression and requirement for survival varies across colon cancer cell lines. While AMPKα1 expression is relatively consistent across colon cancer cell lines, AMPKα1 depletion does not induce cell death. Conversely, AMPKα2 is expressed at variable levels in colon cancer cells. In high expressing SW480 and moderate expressing HCT116 colon cancer cells, siRNA-mediated depletion induces cell death. These data suggest that AMPK kinase inhibition may be a useful component of future therapeutic strategies. …