Open Access. Powered by Scholars. Published by Universities.®

Medical Biotechnology Commons

Open Access. Powered by Scholars. Published by Universities.®

Analytical, Diagnostic and Therapeutic Techniques and Equipment

PDF

Lipids

Articles 1 - 2 of 2

Full-Text Articles in Medical Biotechnology

Raman Spectroscopic Analysis Of Human Skin Tissue Sections Ex-Vivo: Evaluation Of The Effects Of Tissue Processing And Dewaxing, Syed Mehmood Ali, Franck Bonnier, Ali Tfayli, Helen Lambkin, Kathleen Flynn, Vincent Mcdonagh, Claragh Healy, Thomas Lee, Fiona Lyng, Hugh Byrne Jun 2013

Raman Spectroscopic Analysis Of Human Skin Tissue Sections Ex-Vivo: Evaluation Of The Effects Of Tissue Processing And Dewaxing, Syed Mehmood Ali, Franck Bonnier, Ali Tfayli, Helen Lambkin, Kathleen Flynn, Vincent Mcdonagh, Claragh Healy, Thomas Lee, Fiona Lyng, Hugh Byrne

Articles

Raman spectroscopy coupled with K-means clustering analysis (KMCA) is employed to elucidate the biochemical structure of human skin tissue sections, and the effects of tissue processing. Both hand and thigh sections of human cadavers were analysed in their unprocessed and formalin fixed paraffin processed (FFPP) and subsequently dewaxed forms. In unprocessed sections, KMCA reveals clear differentiation of the stratum corneum, intermediate underlying epithelium and dermal layers for sections from both anatomical sites. The stratum corneum is seen to be relatively rich in lipidic content; the spectrum of the subjacent layers is strongly influenced by the presence of melanin, while that …


Studies On The Formation Of Dna-Cationic Lipid Composite Films And Dna Hybridization In The Composites, Murali Sastry, Vidya Ramakrishnan, Mrunalini Pattarkine, Krishna N. Ganesh May 2001

Studies On The Formation Of Dna-Cationic Lipid Composite Films And Dna Hybridization In The Composites, Murali Sastry, Vidya Ramakrishnan, Mrunalini Pattarkine, Krishna N. Ganesh

Faculty Works

The formation of composite films of double-stranded DNA and cationic lipid molecules (octadecylamine, ODA) and the hybridization of complementary single-stranded DNA molecules in such composite films are demonstrated. The immobilization of DNA is accomplished by simple immersion of a thermally evaporated ODA film in the DNA solution at close to physiological pH. The entrapment of the DNA molecules in the cationic lipid film is dominated by attractive electrostatic interaction between the negatively charged phosphate backbone of the DNA molecules and the protonated amine molecules in the thermally evaporated film and has been quantified using quartz crystal microgravimetry (QCM). Fluorescence studies …