Open Access. Powered by Scholars. Published by Universities.®

Medical Biochemistry Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 9 of 9

Full-Text Articles in Medical Biochemistry

Minimal Membrane Docking Requirements Revealed By Reconstitution Of Rab Gtpase-Dependent Membrane Fusion From Purified Components, Christopher Stroupe, Christopher M. Hickey, Joji Mima, Amy S. Burfeind, William Wickner Oct 2009

Minimal Membrane Docking Requirements Revealed By Reconstitution Of Rab Gtpase-Dependent Membrane Fusion From Purified Components, Christopher Stroupe, Christopher M. Hickey, Joji Mima, Amy S. Burfeind, William Wickner

Dartmouth Scholarship

Rab GTPases and their effectors mediate docking, the initial contact of intracellular membranes preceding bilayer fusion. However, it has been unclear whether Rab proteins and effectors are sufficient for intermembrane interactions. We have recently reported reconstituted membrane fusion that requires yeast vacuolar SNAREs, lipids, and the homotypic fusion and vacuole protein sorting (HOPS)/class C Vps complex, an effector and guanine nucleotide exchange factor for the yeast vacuolar Rab GTPase Ypt7p. We now report reconstitution of lysis-free membrane fusion that requires purified GTP-bound Ypt7p, HOPS complex, vacuolar SNAREs, ATP hydrolysis, and the SNARE disassembly catalysts Sec17p and Sec18p. We use this …


Phosphoinositides And Snare Chaperones Synergistically Assemble And Remodel Snare Complexes For Membrane Fusion, Joji Mima, William Wickner Sep 2009

Phosphoinositides And Snare Chaperones Synergistically Assemble And Remodel Snare Complexes For Membrane Fusion, Joji Mima, William Wickner

Dartmouth Scholarship

Yeast vacuole fusion requires 4 SNAREs, 2 SNARE chaperone systems (Sec17p/Sec18p/ATP and the HOPS complex), and 2 phosphoinositides, phosphatidylinositol 3-phosphate [PI(3)P] and phosphatidylinositol 4,5-bisphosphate [PI(4,5)P2]. By reconstituting proteoliposomal fusion with purified components, we now show that phosphoinositides have 4 distinct roles: PI(3)P is recognized by the PX domain of the SNARE Vam7p; PI(3)P enhances the capacity of membrane-bound SNAREs to drive fusion in the absence of SNARE chaperones; either PI(3)P or PI(4,5)P2 can activate SNARE chaperones for the recruitment of Vam7p into fusion-competent SNARE complexes; and either PI(3)P or PI(4,5)P2 strikingly promotes synergistic SNARE complex remodeling …


Assays Of Vacuole Fusion Resolve The Stages Of Docking, Lipid Mixing, And Content Mixing, Youngsoo Jun, William Wickner Aug 2007

Assays Of Vacuole Fusion Resolve The Stages Of Docking, Lipid Mixing, And Content Mixing, Youngsoo Jun, William Wickner

Dartmouth Scholarship

Membrane fusion entails organelle docking and subsequent mixing of membrane bilayers and luminal compartments. We now present an in vitro assay of fusion, using yeast vacuoles bearing domains of either Fos or Jun fused to complementary halves of beta-lactamase. Upon fusion, these proteins associate to yield beta-lactamase activity. This assay complements the standard fusion assay (activation of pro-Pho8p in protease-deficient vacuoles by proteases from pho8Delta vacuoles). Both the beta-lactamase and pro-Pho8p activation assays of fusion show the same long kinetic delay between SNARE pairing and luminal compartment mixing. Lipid-mixing occurs rapidly after SNARE pairing but well before aqueous compartment mixing. …


Trans-Snare Complex Assembly And Yeast Vacuole Membrane Fusion, Kevin M. Collins, William T. Wickner May 2007

Trans-Snare Complex Assembly And Yeast Vacuole Membrane Fusion, Kevin M. Collins, William T. Wickner

Dartmouth Scholarship

cis-SNARE complexes (anchored in one membrane) are disassembled by Sec17p (α-SNAP) and Sec18p (NSF), permitting the unpaired SNAREs to assemble in trans. We now report a direct assay of trans-SNARE complex formation during yeast vacuole docking. SNARE complex assembly and fusion is promoted by high concentrations of the SNARE Vam7p or Nyv1p or by addition of HOPS (homotypic fusion and vacuole protein sorting), a Ypt7p (Rab)-effector complex with a Sec1/Munc18-family subunit. Inhibitors that target Ypt7p, HOPS, or key regulatory lipids prevent trans-SNARE complex assembly and ensuing fusion. Strikingly, the lipid ligand MED (myristoylated alanine-rich C kinase substrate effector domain) or …


Interdependent Assembly Of Specific Regulatory Lipids And Membrane Fusion Proteins Into The Vertex Ring Domain Of Docked Vacuoles, Rutilio A. Fratti, Youngsoo Jun, Alexey J. Merz, Nathan Margolis, William Wickner Dec 2004

Interdependent Assembly Of Specific Regulatory Lipids And Membrane Fusion Proteins Into The Vertex Ring Domain Of Docked Vacuoles, Rutilio A. Fratti, Youngsoo Jun, Alexey J. Merz, Nathan Margolis, William Wickner

Dartmouth Scholarship

Membrane microdomains are assembled by lipid partitioning (e.g., rafts) or by protein-protein interactions (e.g., coated vesicles). During docking, yeast vacuoles assemble "vertex" ring-shaped microdomains around the periphery of their apposed membranes. Vertices are selectively enriched in the Rab GTPase Ypt7p, the homotypic fusion and vacuole protein sorting complex (HOPS)-VpsC Rab effector complex, SNAREs, and actin. Membrane fusion initiates at vertex microdomains. We now find that the "regulatory lipids" ergosterol, diacylglycerol and 3- and 4-phosphoinositides accumulate at vertices in a mutually interdependent manner. Regulatory lipids are also required for the vertex enrichment of SNAREs, Ypt7p, and HOPS. Conversely, SNAREs and actin …


Trans-Snare Interactions Elicit Ca2+ Efflux From The Yeast Vacuole Lumen, Alexey J. Merz, William T. Wickner Jan 2004

Trans-Snare Interactions Elicit Ca2+ Efflux From The Yeast Vacuole Lumen, Alexey J. Merz, William T. Wickner

Dartmouth Scholarship

Ca2+ transients trigger many SNARE-dependent membrane fusion events. The homotypic fusion of yeast vacuoles occurs after a release of lumenal Ca2+. Here, we show that trans-SNARE interactions promote the release of Ca2+ from the vacuole lumen. Ypt7p-GTP, the Sec1p/Munc18-protein Vps33p, and Rho GTPases, all of which function during docking, are required for Ca2+ release. Inhibitors of SNARE function prevent Ca2+ release. Recombinant Vam7p, a soluble Q-SNARE, stimulates Ca2+ release. Vacuoles lacking either of two complementary SNAREs, Vam3p or Nyv1p, fail to release Ca2+ upon tethering. Mixing these two vacuole populations together allows Vam3p and Nyv1p to interact in trans and …


Vam10p Defines A Sec18p-Independent Step Of Priming That Allows Yeast Vacuole Tethering, Masashi Kato, William Wickner May 2003

Vam10p Defines A Sec18p-Independent Step Of Priming That Allows Yeast Vacuole Tethering, Masashi Kato, William Wickner

Dartmouth Scholarship

YOR068c, termed VAM10 (altered vacuole morphology), lies within the VPS5 gene on the opposite DNA strand. VAM10 deletion causes vacuole fragmentation in vivo. The in vitro fusion of purified yeast vacuoles is stimulated by recombinant Vam10p and blocked by antibody to Vam10p. Vam10p acts early in the priming stage of fusion, independent of Sec18p. After priming, recombinant Vam10p will not stimulate fusion and anti-Vam10p antibodies will not inhibit; Vam10p provides a functional marker for this Sec18p-independent priming step. Pure Vam10p restores normal, Ypt7p-dependent tethering to vacuoles from a vam10Δ strain.


Remodeling Of Organelle-Bound Actin Is Required For Yeast Vacuole Fusion, Gary Eitzen, Li Wang, Naomi Thorngren, William Wickner Aug 2002

Remodeling Of Organelle-Bound Actin Is Required For Yeast Vacuole Fusion, Gary Eitzen, Li Wang, Naomi Thorngren, William Wickner

Dartmouth Scholarship

Actin participates in several intracellular trafficking pathways. We now find that actin, bound to the surface of purified yeast vacuoles in the absence of cytosol or cytoskeleton, regulates the last compartment mixing stage of homotypic vacuole fusion. The Cdc42p GTPase is known to be required for vacuole fusion. We now show that proteins of the Cdc42p-regulated actin remodeling cascade (Cdc42p --> Cla4p --> Las17p/Vrp1p --> Arp2/3 complex --> actin) are enriched on isolated vacuoles. Vacuole fusion is dramatically altered by perturbation of the vacuole-bound actin, either by mutation of the ACT1 gene, addition of specific actin ligands such as latrunculin …


A New Role For A Snare Protein As A Regulator Of The Ypt7/Rab-Dependent Stage Of Docking, Christian Ungermann, Albert Price, William Wickner Aug 2000

A New Role For A Snare Protein As A Regulator Of The Ypt7/Rab-Dependent Stage Of Docking, Christian Ungermann, Albert Price, William Wickner

Dartmouth Scholarship

The homotypic fusion of yeast vacuoles occurs in an ordered cascade of priming, docking, and fusion. The linkage between these steps has so far remained unclear. We now report that Vam7p (the vacuolar SNAP-23/25 homolog) signals from the cis-SNARE complex to Ypt7p (the vacuolar Rab/Ypt) to initiate the docking process. After Vam7p has been released from the cis-SNARE complex by Sec18p-mediated priming, it is still required for Ypt7p-dependent docking and it needs Ypt7p to remain on the vacuole.