Open Access. Powered by Scholars. Published by Universities.®

Medical Biochemistry Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 10 of 10

Full-Text Articles in Medical Biochemistry

The 40-Residue Insertion In Vibrio Cholerae Fadr Facilitates Binding Of An Additional Fatty Acyl-Coa Ligand, Wei Shi, Gabriela Kovacikova, Wei Lin, Ronald. K. Taylor, Karen Skorupski, F. Jon Kull Jan 2016

The 40-Residue Insertion In Vibrio Cholerae Fadr Facilitates Binding Of An Additional Fatty Acyl-Coa Ligand, Wei Shi, Gabriela Kovacikova, Wei Lin, Ronald. K. Taylor, Karen Skorupski, F. Jon Kull

Dartmouth Scholarship

FadR is a master regulator of fatty acid metabolism and influences virulence in certain members of Vibrionaceae. Among FadR homologues of the GntR family, the Vibrionaceae protein is unusual in that it contains a C-terminal 40-residue insertion. Here we report the structure of Vibrio cholerae FadR (VcFadR) alone, bound to DNA, and in the presence of a ligand, oleoyl-CoA. Whereas Escherichia coli FadR (EcFadR) contains only one acyl-CoA-binding site in each monomer, crystallographic and calorimetric data indicate that VcFadR has two. One of the binding sites resembles that of EcFadR, whereas the other, comprised residues from the insertion, has not …


Sec17 Can Trigger Fusion Of Trans-Snare Paired Membranes Without Sec18, Michael Zick, Amy Orr, Matthew L. Schwartz, Alexey J. Merz, William Wickner Apr 2015

Sec17 Can Trigger Fusion Of Trans-Snare Paired Membranes Without Sec18, Michael Zick, Amy Orr, Matthew L. Schwartz, Alexey J. Merz, William Wickner

Dartmouth Scholarship

Sec17 [soluble N-ethylmaleimide-sensitive factor (NSF) attachment protein; α-SNAP] and Sec18 (NSF) perform ATP-dependent disassembly of cis-SNARE complexes, liberating SNAREs for subsequent assembly of trans-complexes for fusion. A mutant of Sec17, with limited ability to stimulate Sec18, still strongly enhanced fusion when ample Sec18 was supplied, suggesting that Sec17 has additional functions. We used fusion reactions where the four SNAREs were initially separate, thus requiring no disassembly by Sec18. With proteoliposomes bearing asymmetrically disposed SNAREs, tethering and trans-SNARE pairing allowed slow fusion. Addition of Sec17 did not affect the levels of trans-SNARE complex but triggered sudden fusion of trans-SNARE paired proteoliposomes. …


Epoxide-Mediated Cifr Repression Of Cif Gene Expression Utilizes Two Binding Sites In Pseudomonas Aeruginosa, Alicia E. Ballok, Christopher D. Bahl, Emily L. Dolben, Allia K. Lindsay, Jessica D. St. Laurent, Deborah Hogan, Dean Madden, George A. O'Toole Jul 2012

Epoxide-Mediated Cifr Repression Of Cif Gene Expression Utilizes Two Binding Sites In Pseudomonas Aeruginosa, Alicia E. Ballok, Christopher D. Bahl, Emily L. Dolben, Allia K. Lindsay, Jessica D. St. Laurent, Deborah Hogan, Dean Madden, George A. O'Toole

Dartmouth Scholarship

Pseudomonas aeruginosa secretes an epoxide hydrolase virulence factor that reduces the apical membrane expression of ABC transporters such as the cystic fibrosis transmembrane conductance regulator (CFTR). This virulence factor, named CFTR inhibitory factor (Cif), is regulated by a TetR-family, epoxide-responsive repressor known as CifR via direct binding and repression. We identified two sites of CifR binding in the intergenic space between cifR and morB, the first gene in the operon containing the cif gene. We have mapped these binding sites and found they are 27 bp in length, and they overlap the -10 and +1 sites of both the cifR …


Med5(Nut1) And Med17(Srb4) Are Direct Targets Of Mediator Histone H4 Tail Interactions, Zhongle Liu, Lawrence C. Myers Jun 2012

Med5(Nut1) And Med17(Srb4) Are Direct Targets Of Mediator Histone H4 Tail Interactions, Zhongle Liu, Lawrence C. Myers

Dartmouth Scholarship

The Mediator complex transmits activation signals from DNA bound transcription factors to the core transcription machinery. In addition to its canonical role in transcriptional activation, recent studies have demonstrated that S. cerevisiae Mediator can interact directly with nucleosomes, and their histone tails. Mutations in Mediator subunits have shown that Mediator and certain chromatin structures mutually impact each other structurally and functionally in vivo. We have taken a UV photo cross-linking approach to further delineate the molecular basis of Mediator chromatin interactions and help determine whether the impact of certain Mediator mutants on chromatin is direct. Specifically, by using histone …


Phosphoinositides And Snare Chaperones Synergistically Assemble And Remodel Snare Complexes For Membrane Fusion, Joji Mima, William Wickner Sep 2009

Phosphoinositides And Snare Chaperones Synergistically Assemble And Remodel Snare Complexes For Membrane Fusion, Joji Mima, William Wickner

Dartmouth Scholarship

Yeast vacuole fusion requires 4 SNAREs, 2 SNARE chaperone systems (Sec17p/Sec18p/ATP and the HOPS complex), and 2 phosphoinositides, phosphatidylinositol 3-phosphate [PI(3)P] and phosphatidylinositol 4,5-bisphosphate [PI(4,5)P2]. By reconstituting proteoliposomal fusion with purified components, we now show that phosphoinositides have 4 distinct roles: PI(3)P is recognized by the PX domain of the SNARE Vam7p; PI(3)P enhances the capacity of membrane-bound SNAREs to drive fusion in the absence of SNARE chaperones; either PI(3)P or PI(4,5)P2 can activate SNARE chaperones for the recruitment of Vam7p into fusion-competent SNARE complexes; and either PI(3)P or PI(4,5)P2 strikingly promotes synergistic SNARE complex remodeling …


Trans-Snare Complex Assembly And Yeast Vacuole Membrane Fusion, Kevin M. Collins, William T. Wickner May 2007

Trans-Snare Complex Assembly And Yeast Vacuole Membrane Fusion, Kevin M. Collins, William T. Wickner

Dartmouth Scholarship

cis-SNARE complexes (anchored in one membrane) are disassembled by Sec17p (α-SNAP) and Sec18p (NSF), permitting the unpaired SNAREs to assemble in trans. We now report a direct assay of trans-SNARE complex formation during yeast vacuole docking. SNARE complex assembly and fusion is promoted by high concentrations of the SNARE Vam7p or Nyv1p or by addition of HOPS (homotypic fusion and vacuole protein sorting), a Ypt7p (Rab)-effector complex with a Sec1/Munc18-family subunit. Inhibitors that target Ypt7p, HOPS, or key regulatory lipids prevent trans-SNARE complex assembly and ensuing fusion. Strikingly, the lipid ligand MED (myristoylated alanine-rich C kinase substrate effector domain) or …


Binding Between The Niemann–Pick C1 Protein And A Photoactivatable Cholesterol Analog Requires A Functional Sterol-Sensing Domain, Nobutaka Ohgami, Dennis C. Ko, Matthew Thomas, Matthew P. Scott, Catherine C. Y. Chang, Ta-Yuan Chang Aug 2004

Binding Between The Niemann–Pick C1 Protein And A Photoactivatable Cholesterol Analog Requires A Functional Sterol-Sensing Domain, Nobutaka Ohgami, Dennis C. Ko, Matthew Thomas, Matthew P. Scott, Catherine C. Y. Chang, Ta-Yuan Chang

Dartmouth Scholarship

Niemann-Pick type C (NPC) 1 protein plays important roles in moving cholesterol and other lipids out of late endosomes by means of vesicular trafficking, but it is not known whether NPC1 directly interacts with cholesterol. We performed photoaffinity labeling of intact cells expressing fluorescent protein (FP)-tagged NPC1 by using [(3)H]7,7-azocholestanol ([(3)H]AC). After immunoprecipitation, (3)H-labeled NPC1-GFP appeared as a single band. Including excess unlabeled sterol to the labeling reaction significantly diminished the labeling. Altering the NPC1 sterol-sensing domain (SSD) with loss-of-function mutations (P692S and Y635C) severely reduced the extent of labeling. To further demonstrate the specificity of labeling, we show that …


Remodeling Of Organelle-Bound Actin Is Required For Yeast Vacuole Fusion, Gary Eitzen, Li Wang, Naomi Thorngren, William Wickner Aug 2002

Remodeling Of Organelle-Bound Actin Is Required For Yeast Vacuole Fusion, Gary Eitzen, Li Wang, Naomi Thorngren, William Wickner

Dartmouth Scholarship

Actin participates in several intracellular trafficking pathways. We now find that actin, bound to the surface of purified yeast vacuoles in the absence of cytosol or cytoskeleton, regulates the last compartment mixing stage of homotypic vacuole fusion. The Cdc42p GTPase is known to be required for vacuole fusion. We now show that proteins of the Cdc42p-regulated actin remodeling cascade (Cdc42p --> Cla4p --> Las17p/Vrp1p --> Arp2/3 complex --> actin) are enriched on isolated vacuoles. Vacuole fusion is dramatically altered by perturbation of the vacuole-bound actin, either by mutation of the ACT1 gene, addition of specific actin ligands such as latrunculin …


A New Role For A Snare Protein As A Regulator Of The Ypt7/Rab-Dependent Stage Of Docking, Christian Ungermann, Albert Price, William Wickner Aug 2000

A New Role For A Snare Protein As A Regulator Of The Ypt7/Rab-Dependent Stage Of Docking, Christian Ungermann, Albert Price, William Wickner

Dartmouth Scholarship

The homotypic fusion of yeast vacuoles occurs in an ordered cascade of priming, docking, and fusion. The linkage between these steps has so far remained unclear. We now report that Vam7p (the vacuolar SNAP-23/25 homolog) signals from the cis-SNARE complex to Ypt7p (the vacuolar Rab/Ypt) to initiate the docking process. After Vam7p has been released from the cis-SNARE complex by Sec18p-mediated priming, it is still required for Ypt7p-dependent docking and it needs Ypt7p to remain on the vacuole.


Three V-Snares And Two T-Snares, Present In A Pentameric Cis-Snare Complex On Isolated Vacuoles, Are Essential For Homotypic Fusion, Christian Ungermann, Gabriele F. Von Mollard, Ole N. Jensen, Nathan Margolis, Tom H. Stevens, William Wickner Jun 1999

Three V-Snares And Two T-Snares, Present In A Pentameric Cis-Snare Complex On Isolated Vacuoles, Are Essential For Homotypic Fusion, Christian Ungermann, Gabriele F. Von Mollard, Ole N. Jensen, Nathan Margolis, Tom H. Stevens, William Wickner

Dartmouth Scholarship

Vacuole SNAREs, including the t-SNAREs Vam3p and Vam7p and the v-SNARE Nyv1p, are found in a multisubunit "cis" complex on isolated organelles. We now identify the v-SNAREs Vti1p and Ykt6p by mass spectrometry as additional components of the immunoisolated vacuolar SNARE complex. Immunodepletion of detergent extracts with anti-Vti1p removes all the Ykt6p that is in a complex with Vam3p, immunodepletion with anti-Ykt6p removes all the Vti1p that is complexed with Vam3p, and immunodepletion with anti-Nyv1p removes all the Ykt6p in complex with other SNAREs, demonstrating that they are all together in the same cis multi-SNARE complex. After priming, which disassembles …