Open Access. Powered by Scholars. Published by Universities.®

Medical Biochemistry Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 19 of 19

Full-Text Articles in Medical Biochemistry

Stag2 Promotes Error Correction In Mitosis By Regulating Kinetochore–Microtubule Attachments, Marianna Kleyman, Lilian Kabeche, Duane A. Compton Jul 2014

Stag2 Promotes Error Correction In Mitosis By Regulating Kinetochore–Microtubule Attachments, Marianna Kleyman, Lilian Kabeche, Duane A. Compton

Dartmouth Scholarship

Mutations in the STAG2 gene are present in ∼20% of tumors from different tissues of origin. STAG2 encodes a subunit of the cohesin complex, and tumors with loss-of-function mutations are usually aneuploid and display elevated frequencies of lagging chromosomes during anaphase. Lagging chromosomes are a hallmark of chromosomal instability (CIN) arising from persistent errors in kinetochore-microtubule (kMT) attachment. To determine whether the loss of STAG2 increases the rate of formation of kMT attachment errors or decreases the rate of their correction, we examined mitosis in STAG2-deficient cells. STAG2 depletion does not impair bipolar spindle formation or delay mitotic progression. Instead, …


Novel Roles For Actin In Mitochondrial Fission, Anna L. Hatch, Pinar S. Gurel, Henry N. Higgs Jan 2014

Novel Roles For Actin In Mitochondrial Fission, Anna L. Hatch, Pinar S. Gurel, Henry N. Higgs

Dartmouth Scholarship

Mitochondrial dynamics, including fusion, fission and translocation, are crucial to cellular homeostasis, with roles in cellular polarity, stress response and apoptosis. Mitochondrial fission has received particular attention, owing to links with several neurodegenerative diseases. A central player in fission is the cytoplasmic dynamin-related GTPase Drp1, which oligomerizes at the fission site and hydrolyzes GTP to drive membrane ingression. Drp1 recruitment to the outer mitochondrial membrane (OMM) is a key regulatory event, which appears to require a pre-constriction step in which the endoplasmic reticulum (ER) and mitochondrion interact extensively, a process termed ERMD (ER-associated mitochondrial division). It is unclear how ER-mitochondrial …


Interactions Of Peptide Triazole Thiols With Env Gp120 Induce Irreversible Breakdown And Inactivation Of Hiv-1 Virions, Arangassery Bastian, Mark Contarino, Lauren D. Bailey, Rachna Aneja, Diogo Rodrigo Magalhaes Moreira, Kevin Freedman, Karyn Mcfadden, Caitlin Duffy, Ali Emileh Dec 2013

Interactions Of Peptide Triazole Thiols With Env Gp120 Induce Irreversible Breakdown And Inactivation Of Hiv-1 Virions, Arangassery Bastian, Mark Contarino, Lauren D. Bailey, Rachna Aneja, Diogo Rodrigo Magalhaes Moreira, Kevin Freedman, Karyn Mcfadden, Caitlin Duffy, Ali Emileh

Dartmouth Scholarship

Background: We examined the underlying mechanism of action of the peptide triazole thiol, KR13 that has been shown previously to specifically bind gp120, block cell receptor site interactions and potently inhibit HIV-1 infectivity.

Results: KR13, the sulfhydryl blocked KR13b and its parent non-sulfhydryl peptide triazole, HNG156, induced gp120 shedding but only KR13 induced p24 capsid protein release. The resulting virion post virolysis had an altered morphology, contained no gp120, but retained gp41 that bound to neutralizing gp41 antibodies. Remarkably, HIV-1 p24 release by KR13 was inhibited by enfuvirtide, which blocks formation of the gp41 6-helix bundle during membrane fusion, while …


Epoxide-Mediated Cifr Repression Of Cif Gene Expression Utilizes Two Binding Sites In Pseudomonas Aeruginosa, Alicia E. Ballok, Christopher D. Bahl, Emily L. Dolben, Allia K. Lindsay, Jessica D. St. Laurent, Deborah Hogan, Dean Madden, George A. O'Toole Jul 2012

Epoxide-Mediated Cifr Repression Of Cif Gene Expression Utilizes Two Binding Sites In Pseudomonas Aeruginosa, Alicia E. Ballok, Christopher D. Bahl, Emily L. Dolben, Allia K. Lindsay, Jessica D. St. Laurent, Deborah Hogan, Dean Madden, George A. O'Toole

Dartmouth Scholarship

Pseudomonas aeruginosa secretes an epoxide hydrolase virulence factor that reduces the apical membrane expression of ABC transporters such as the cystic fibrosis transmembrane conductance regulator (CFTR). This virulence factor, named CFTR inhibitory factor (Cif), is regulated by a TetR-family, epoxide-responsive repressor known as CifR via direct binding and repression. We identified two sites of CifR binding in the intergenic space between cifR and morB, the first gene in the operon containing the cif gene. We have mapped these binding sites and found they are 27 bp in length, and they overlap the -10 and +1 sites of both the cifR …


The Formin Fmnl3 Is A Cytoskeletal Regulator Of Angiogenesis, Clare Hetheridge, Alice N. Scott, Rajeeb K. Swain, John W. Copeland, Henry N. Higgs Jan 2012

The Formin Fmnl3 Is A Cytoskeletal Regulator Of Angiogenesis, Clare Hetheridge, Alice N. Scott, Rajeeb K. Swain, John W. Copeland, Henry N. Higgs

Dartmouth Scholarship

The process of angiogenesis requires endothelial cells (ECs) to undergo profound changes in shape and polarity. Although this must involve remodelling of the EC cytoskeleton, little is known about this process or the proteins that control it. We used a co-culture assay of angiogenesis to examine the cytoskeleton of ECs actively undergoing angiogenic morphogenesis. We found that elongation of ECs during angiogenesis is accompanied by stabilisation of microtubules and their alignment into parallel arrays directed at the growing tip. In other systems, similar microtubule alignments are mediated by the formin family of cytoskeletal regulators. We screened a library of human …


Rho Activation Of Mdia Formins Is Modulated By An Interaction With Inverted Formin 2 (Inf2), Hua Sun, Johannes S. Schlondorff, Elizabeth J. Brown, Henry N. Higgs, Martin R. Pollak Feb 2011

Rho Activation Of Mdia Formins Is Modulated By An Interaction With Inverted Formin 2 (Inf2), Hua Sun, Johannes S. Schlondorff, Elizabeth J. Brown, Henry N. Higgs, Martin R. Pollak

Dartmouth Scholarship

Inverted formin 2 (INF2) encodes a member of the diaphanous subfamily of formin proteins. Mutations in INF2 cause human kidney disease characterized by focal and segmental glomerulosclerosis. Disease-causing mutations occur only in the diaphanous inhibitory domain (DID), suggesting specific roles for this domain in the pathogenesis of disease. In a yeast two-hybrid screen, we identified the diaphanous autoregulatory domains (DADs) of the mammalian diaphanous-related formins (mDias) mDia1, mDia2, and mDia 3 as INF2_DID-interacting partners. The mDias are Rho family effectors that regulate actin dynamics. We confirmed in vitro INF2_DID/mDia_DAD binding by biochemical assays, confirmed the in vivo interaction of these …


Proliferation Of Aneuploid Human Cells Is Limited By A P53-Dependent Mechanism, Sarah L. Thompson, Duane A. Compton Jan 2010

Proliferation Of Aneuploid Human Cells Is Limited By A P53-Dependent Mechanism, Sarah L. Thompson, Duane A. Compton

Dartmouth Scholarship

Most solid tumors are aneuploid, and it has been proposed that aneuploidy is the consequence of an elevated rate of chromosome missegregation in a process called chromosomal instability (CIN). However, the relationship of aneuploidy and CIN is unclear because the proliferation of cultured diploid cells is compromised by chromosome missegregation. The mechanism for this intolerance of nondiploid genomes is unknown. In this study, we show that in otherwise diploid human cells, chromosome missegregation causes a cell cycle delay with nuclear accumulation of the tumor suppressor p53 and the cyclin kinase inhibitor p21. Deletion of the p53 gene permits the accumulation …


A Truncation Mutation In Tbc1d4 In A Family With Acanthosis Nigricans And Postprandial Hyperinsulinemia, Satya Dash, Hiroyuki Sano, Justin J. Rochford, Robert K. Semple Jun 2009

A Truncation Mutation In Tbc1d4 In A Family With Acanthosis Nigricans And Postprandial Hyperinsulinemia, Satya Dash, Hiroyuki Sano, Justin J. Rochford, Robert K. Semple

Dartmouth Scholarship

Tre-2, BUB2, CDC16, 1 domain family member 4 (TBC1D4) (AS160) is a Rab-GTPase activating protein implicated in insulin-stimulated glucose transporter 4 (GLUT4) translocation in adipocytes and myotubes. To determine whether loss-of-function mutations in TBC1D4 might impair GLUT4 translocation and cause insulin resistance in humans, we screened the coding regions of this gene in 156 severely insulin-resistant patients. A female presenting at age 11 years with acanthosis nigricans and extreme postprandial hyperinsulinemia was heterozygous for a premature stop mutation (R363X) in TBC1D4. After demonstrating reduced expression of wild-type TBC1D4 protein and expression of the truncated protein in lymphocytes from the proband, …


Retinoid X Receptor And Peroxisome Proliferator-Activated Receptor-Gamma Agonists Cooperate To Inhibit Matrix Metalloproteinase Gene Expression, Peter S. Burrage, Adam C. Schmucker, Yanqing Ren, Michael B. Sporn, Constance E. Brinckerhoff Dec 2008

Retinoid X Receptor And Peroxisome Proliferator-Activated Receptor-Gamma Agonists Cooperate To Inhibit Matrix Metalloproteinase Gene Expression, Peter S. Burrage, Adam C. Schmucker, Yanqing Ren, Michael B. Sporn, Constance E. Brinckerhoff

Dartmouth Scholarship

We recently described the ability of retinoid X receptor (RXR) ligand LG100268 (LG268) to inhibit interleukin-1-beta (IL-1-β)-driven matrix metalloproteinase-1 (MMP-1) and MMP-13 gene expression in SW-1353 chondrosarcoma cells. Other investigators have demonstrated similar effects in chondrocytes treated with rosiglitazone, a ligand for peroxisome proliferator-activated receptor-gamma (PPARγ), for which RXR is an obligate dimerization partner. The goals of this study were to evaluate the inhibition of IL-1--induced expression of MMP-1andMMP-13 by combinatorial treatment with RXR and PPAR  ligands and to investigate the molecular mechanisms of this inhibition.


Nicotinamide Riboside Kinase Structures Reveal New Pathways To Nad+, Wolfram Tempel, Wael M. Rabeh, Katrina L. Bogan, Peter Belenky, Marzena Wojcik, Heather F. Seidle, Lyudmila Nedyalkova, Tianle Yang, Anthony A. Sauve, Hee-Won Park, Charles Brenner Oct 2007

Nicotinamide Riboside Kinase Structures Reveal New Pathways To Nad+, Wolfram Tempel, Wael M. Rabeh, Katrina L. Bogan, Peter Belenky, Marzena Wojcik, Heather F. Seidle, Lyudmila Nedyalkova, Tianle Yang, Anthony A. Sauve, Hee-Won Park, Charles Brenner

Dartmouth Scholarship

The eukaryotic nicotinamide riboside kinase (Nrk) pathway, which is induced in response to nerve damage and promotes replicative life span in yeast, converts nicotinamide riboside to nicotinamide adenine dinucleotide (NAD+) by phosphorylation and adenylylation. Crystal structures of human Nrk1 bound to nucleoside and nucleotide substrates and products revealed an enzyme structurally similar to Rossmann fold metabolite kinases and allowed the identification of active site residues, which were shown to be essential for human Nrk1 and Nrk2 activity in vivo. Although the structures account for the 500-fold discrimination between nicotinamide riboside and pyrimidine nucleosides, no enzyme feature was identified to recognize …


Binding Between The Niemann–Pick C1 Protein And A Photoactivatable Cholesterol Analog Requires A Functional Sterol-Sensing Domain, Nobutaka Ohgami, Dennis C. Ko, Matthew Thomas, Matthew P. Scott, Catherine C. Y. Chang, Ta-Yuan Chang Aug 2004

Binding Between The Niemann–Pick C1 Protein And A Photoactivatable Cholesterol Analog Requires A Functional Sterol-Sensing Domain, Nobutaka Ohgami, Dennis C. Ko, Matthew Thomas, Matthew P. Scott, Catherine C. Y. Chang, Ta-Yuan Chang

Dartmouth Scholarship

Niemann-Pick type C (NPC) 1 protein plays important roles in moving cholesterol and other lipids out of late endosomes by means of vesicular trafficking, but it is not known whether NPC1 directly interacts with cholesterol. We performed photoaffinity labeling of intact cells expressing fluorescent protein (FP)-tagged NPC1 by using [(3)H]7,7-azocholestanol ([(3)H]AC). After immunoprecipitation, (3)H-labeled NPC1-GFP appeared as a single band. Including excess unlabeled sterol to the labeling reaction significantly diminished the labeling. Altering the NPC1 sterol-sensing domain (SSD) with loss-of-function mutations (P692S and Y635C) severely reduced the extent of labeling. To further demonstrate the specificity of labeling, we show that …


The Tumor Suppressor Lkb1 Kinase Directly Activates Amp-Activated Kinase And Regulates Apoptosis In Response To Energy Stress, Reuben J. Shaw, Monica Kosmatka, Nabeel Bardeesy, Rebecca L. Hurley, Lee A. Witters, Ronald A. Depinho, Lewis C. Cantley Mar 2004

The Tumor Suppressor Lkb1 Kinase Directly Activates Amp-Activated Kinase And Regulates Apoptosis In Response To Energy Stress, Reuben J. Shaw, Monica Kosmatka, Nabeel Bardeesy, Rebecca L. Hurley, Lee A. Witters, Ronald A. Depinho, Lewis C. Cantley

Dartmouth Scholarship

AMP-activated protein kinase (AMPK) is a highly conserved sensor of cellular energy status found in all eukaryotic cells. AMPK is activated by stimuli that increase the cellular AMP/ATP ratio. Essential to activation of AMPK is its phosphorylation at Thr-172 by an upstream kinase, AMPKK, whose identity in mammalian cells has remained elusive. Here we present biochemical and genetic evidence indicating that the LKB1 serine/threonine kinase, the gene inactivated in the Peutz-Jeghers familial cancer syndrome, is the dominant regulator of AMPK activation in several mammalian cell types. We show that LKB1 directly phosphorylates Thr-172 of AMPKalpha in vitro and activates its …


Copper Chelation Represses The Vascular Response To Injury, Lazar Mandinov, Anna Mandinova, Stanimir Kyurkchiev, Dobroslav Kyurkchiev, Ivan Kehayov, Vihren Kolev, Raffaella Soldi, Cinzia Bagala, Ebo D. De Muinck, Volkhard Lindner, Mark J. Post, Michael Simons May 2003

Copper Chelation Represses The Vascular Response To Injury, Lazar Mandinov, Anna Mandinova, Stanimir Kyurkchiev, Dobroslav Kyurkchiev, Ivan Kehayov, Vihren Kolev, Raffaella Soldi, Cinzia Bagala, Ebo D. De Muinck, Volkhard Lindner, Mark J. Post, Michael Simons

Dartmouth Scholarship

The induction of an acute inflammatory response followed by the release of polypeptide cytokines and growth factors from peripheral blood monocytes has been implicated in mediating the response to vascular injury. Because the Cu2+-binding proteins IL-1alpha and fibroblast growth factor 1 are exported into the extracellular compartment in a stress-dependent manner by using intracellular Cu2+ to facilitate the formation of S100A13 heterotetrameric complexes and these signal peptideless polypeptides have been implicated as regulators of vascular injury in vivo, we examined the ability of Cu2+ chelation to repress neointimal thickening in response to injury. We observed that the oral administration of …


Mammalian Erv46 Localizes To The Endoplasmic Reticulum–Golgi Intermediate Compartment And To Cis-Golgi Cisternae, Lelio Orci, Mariella Ravazzola, Gary J. Mack, Charles Barlowe, Stefan Otte Apr 2003

Mammalian Erv46 Localizes To The Endoplasmic Reticulum–Golgi Intermediate Compartment And To Cis-Golgi Cisternae, Lelio Orci, Mariella Ravazzola, Gary J. Mack, Charles Barlowe, Stefan Otte

Dartmouth Scholarship

Yeast endoplasmic reticulum (ER) vesicle protein Erv46p is a novel membrane protein involved in transport through the early secretory pathway. Investigation of mammalian Erv46 (mErv46) reveals that it is broadly expressed in tissues and protein-secreting cells. By immunofluorescence microscopy, mErv46 displays a crescent-shaped perinuclear staining pattern that is characteristic of the Golgi complex. Quantitative immunoelectron microscopy indicates that mErv46 is restricted to the cis face of the Golgi apparatus and to vesicular tubular structures between the transitional ER and cis-Golgi. Minor amounts of mErv46 reside in ER membranes and later Golgi cisternae. On Brefeldin A treatment, mErv46 redistributes to punctate …


Analysis Of Mitotic Microtubule-Associated Proteins Using Mass Spectrometry Identifies Astrin, A Spindle-Associated Protein, Gary J. Mack, Duane A. Compton Dec 2001

Analysis Of Mitotic Microtubule-Associated Proteins Using Mass Spectrometry Identifies Astrin, A Spindle-Associated Protein, Gary J. Mack, Duane A. Compton

Dartmouth Scholarship

We purified microtubules from a mammalian mitotic extract and obtained an amino acid sequence from each microtubule-associated protein by using mass spectrometry. Most of these proteins are known spindle-associated components with essential functional roles in spindle organization. We generated antibodies against a protein identified in this collection and refer to it as astrin because of its association with astral microtubule arrays assembled in vitro. Astrin is approximately 134 kDa, and except for a large predicted coiled-coil domain in its C-terminal region it lacks any known functional motifs. Astrin associates with spindle microtubules as early as prophase where it concentrates at …


The Chromokinesin Kid Is Necessary For Chromosome Arm Orientation And Oscillation, But Not Congression, On Mitotic Spindles, Aime A. Levesque, Duane A. Compton Sep 2001

The Chromokinesin Kid Is Necessary For Chromosome Arm Orientation And Oscillation, But Not Congression, On Mitotic Spindles, Aime A. Levesque, Duane A. Compton

Dartmouth Scholarship

Chromokinesins have been postulated to provide the polar ejection force needed for chromosome congression during mitosis. We have evaluated that possibility by monitoring chromosome movement in vertebrate-cultured cells using time-lapse differential interference contrast microscopy after microinjection with antibodies specific for the chromokinesin Kid. 17.5% of cells injected with Kid-specific antibodies have one or more chromosomes that remain closely opposed to a spindle pole and fail to enter anaphase. In contrast, 82.5% of injected cells align chromosomes in metaphase, progress to anaphase, and display chromosome velocities not significantly different from control cells. However, injected cells lack chromosome oscillations, and chromosome orientation …


A Phorbol Ester Response Element Within The Human T-Cell Receptor Beta-Chain Enhancer., Haydn M. Prosser, David Wotton, Anne Gegonne, Jacques Ghysdael, Shuwen Wang, Nancy A. Speck, Michael J. Owen Oct 1992

A Phorbol Ester Response Element Within The Human T-Cell Receptor Beta-Chain Enhancer., Haydn M. Prosser, David Wotton, Anne Gegonne, Jacques Ghysdael, Shuwen Wang, Nancy A. Speck, Michael J. Owen

Dartmouth Scholarship

The activity of the T-cell receptor beta-chain gene enhancer is increased by activators of the protein kinase C pathway during T-cell activation. Analysis of mutant enhancer constructs identified two elements, beta E2 and beta E3, conferring phorbol ester inducibility. Multimerized beta E2 acted in isolation as a phorbol ester-responsive element. Both beta E2 and beta E3, which contain a consensus Ets-binding site, were shown to bind directly to the product of the c-ets-1 protooncogene. Both regions also bound a second factor, core-binding factor. Mutation of the beta E2 Ets site abolished the inducibility of the beta E2 multimer. beta E2 …


Fibril In Senile Systemic Amyloidosis Is Derived From Normal Transthyretin., Per Westermark, Knut Sletten, Bjorn Johansson, Gibbons G. Cornwell Apr 1990

Fibril In Senile Systemic Amyloidosis Is Derived From Normal Transthyretin., Per Westermark, Knut Sletten, Bjorn Johansson, Gibbons G. Cornwell

Dartmouth Scholarship

The amyloid fibril in senile systemic amyloidosis (SSA), like that of familial amyloidotic polyneuropathy, is derived from transthyretin (TTR). SSA, however, is a common disease, affecting to some degree 25% of the population greater than 80 years old. In familial amyloidotic polyneuropathy, the amyloidogenesis has been considered to depend on point mutations leading to TTR variants. We show that the TTR molecule in SSA, on the other hand, has a normal primary structure. Factors other than the primary structure of TTR must therefore be important in the pathogenesis of TTR-derived amyloid.


Proteins Antigenically Related To The Human Erythrocyte Glucose Transporter In Normal And Rous Sarcoma Virus-Transformed Chicken Embryo Fibroblasts., Donald W. Salter, Stephen A. Baldwin, Gustav E. Lienhard, Michael J. Weber Mar 1982

Proteins Antigenically Related To The Human Erythrocyte Glucose Transporter In Normal And Rous Sarcoma Virus-Transformed Chicken Embryo Fibroblasts., Donald W. Salter, Stephen A. Baldwin, Gustav E. Lienhard, Michael J. Weber

Dartmouth Scholarship

Antibody raised against the purified human erythrocyte glucose transporter specifically precipitated four proteins from normal and Rous sarcoma virus-transformed chicken embryo cells: a major protein of Mr 41,000 and minor proteins of Mr 68,000, 73,000, and 82,000. The Mr 41,000 and 82,000 proteins were found only in a membrane fraction, not in the soluble fraction, and displayed a heterogeneous mobility on NaDodSO4/polyacrylamide gel electrophoresis, suggesting glycosylation. The Mr 41,000 and 82,000 proteins were increased in amount after malignant transformation in direct proportion to the increase in hexose transport rate, and the increase was dependent on the expression of the src …