Open Access. Powered by Scholars. Published by Universities.®

Medical Biochemistry Commons

Open Access. Powered by Scholars. Published by Universities.®

Dartmouth Scholarship

Medical Molecular Biology

Mediator complex

Publication Year

Articles 1 - 2 of 2

Full-Text Articles in Medical Biochemistry

Fungal Mediator Tail Subunits Contain Classical Transcriptional Activation Domains, Zhongle Liu, Lawrence C. Myers Feb 2015

Fungal Mediator Tail Subunits Contain Classical Transcriptional Activation Domains, Zhongle Liu, Lawrence C. Myers

Dartmouth Scholarship

Classical activation domains within DNA-bound eukaryotic transcription factors make weak interactions with coactivator complexes, such as Mediator, to stimulate transcription. How these interactions stimulate transcription, however, is unknown. The activation of reporter genes by artificial fusion of Mediator subunits to DNA binding domains that bind to their promoters has been cited as evidence that the primary role of activators is simply to recruit Mediator. We have identified potent classical transcriptional activation domains in the C termini of several tail module subunits of Saccharomyces cerevisiae, Candida albicans, and Candida dubliniensis Mediator, while their N-terminal domains are necessary and sufficient for their …


Mediator Influences Telomeric Silencing And Cellular Life Span, Xuefeng Zhu, Beidong Liu, Jonas O. P. Carlsten, Jenny Beve, Thomas Nyström, Lawrence C. Myers, Claes M. Gustafsson Jun 2011

Mediator Influences Telomeric Silencing And Cellular Life Span, Xuefeng Zhu, Beidong Liu, Jonas O. P. Carlsten, Jenny Beve, Thomas Nyström, Lawrence C. Myers, Claes M. Gustafsson

Dartmouth Scholarship

The Mediator complex is required for the regulated transcription of nearly all RNA polymerase II-dependent genes. Here we demonstrate a new role for Mediator which appears to be separate from its function as a transcriptional coactivator. Mediator associates directly with heterochromatin at telomeres and influences the exact boundary between active and inactive chromatin. Loss of the Mediator Med5 subunit or mutations in Med7 cause a depletion of the complex from regions located near subtelomeric X elements, which leads to a change in the balance between the Sir2 and Sas2 proteins. These changes in turn result in increased levels of H4K16 …