Open Access. Powered by Scholars. Published by Universities.®

Medical Biochemistry Commons

Open Access. Powered by Scholars. Published by Universities.®

Dartmouth Scholarship

Medical Genetics

Physiology

Articles 1 - 5 of 5

Full-Text Articles in Medical Biochemistry

A Developmental Cycle Masks Output From The Circadian Oscillator Under Conditions Of Choline Deficiency In Neurospora, Mi Shi, Luis F. Larrondo, Jennifer J. Loros, Jay C. Dunlap Dec 2007

A Developmental Cycle Masks Output From The Circadian Oscillator Under Conditions Of Choline Deficiency In Neurospora, Mi Shi, Luis F. Larrondo, Jennifer J. Loros, Jay C. Dunlap

Dartmouth Scholarship

In Neurospora, metabolic oscillators coexist with the circadian transcriptional/translational feedback loop governed by the FRQ (Frequency) and WC (White Collar) proteins. One of these, a choline deficiency oscillator (CDO) observed in chol-1 mutants grown under choline starvation, drives an uncompensated long-period developmental cycle ( approximately 60-120 h). To assess possible contributions of this metabolic oscillator to the circadian system, molecular and physiological rhythms were followed in liquid culture under choline starvation, but these only confirmed that an oscillator with a normal circadian period length can run under choline starvation. This finding suggested that long-period developmental cycles elicited by nutritional stress …


Circadian Rhythmicity By Autocatalysis, Arun Mehra, Christian I. Hong, Mi Shi, Jennifer J. Loros, Jay C. Dunlap, Peter Ruoff Jul 2006

Circadian Rhythmicity By Autocatalysis, Arun Mehra, Christian I. Hong, Mi Shi, Jennifer J. Loros, Jay C. Dunlap, Peter Ruoff

Dartmouth Scholarship

The temperature compensated in vitro oscillation of cyanobacterial KaiC phosphorylation, the first example of a thermodynamically closed system showing circadian rhythmicity, only involves the three Kai proteins (KaiA, KaiB, and KaiC) and ATP. In this paper, we describe a model in which the KaiA- and KaiB-assisted autocatalytic phosphorylation and dephosphorylation of KaiC are the source for circadian rhythmicity. This model, based upon autocatalysis instead of transcription-translation negative feedback, shows temperature-compensated circadian limit-cycle oscillations with KaiC phosphorylation profiles and has period lengths and rate constant values that are consistent with experimental observations.


Rhythmic Binding Of A White Collar-Containing Complex To The Frequency Promoter Is Inhibited By Frequency, Allan C. Froehlich, Jennifer J. Loros, Jay C. Dunlap May 2003

Rhythmic Binding Of A White Collar-Containing Complex To The Frequency Promoter Is Inhibited By Frequency, Allan C. Froehlich, Jennifer J. Loros, Jay C. Dunlap

Dartmouth Scholarship

The biological clock of Neurospora crassa includes interconnected transcriptional and translational feedback loops that cause both the transcript and protein encoded by the frequency gene (frq) to undergo the robust daily oscillations in abundance, which are essential for clock function. To understand better the mechanism generating rhythmic frq transcript, reporter constructs were used to show that the oscillation in frq message is transcriptionally regulated, and a single cis-acting element in the frq promoter, the Clock Box (C box), is both necessary and sufficient for this rhythmic transcription. Nuclear protein extracts used in binding assays revealed that a White Collar (WC)-1- …


Circadian Clock-Specific Roles For The Light Response Protein White Collar-2, Michael A. Collett, Jay C. Dunlap, Jennifer J. Loros Apr 2001

Circadian Clock-Specific Roles For The Light Response Protein White Collar-2, Michael A. Collett, Jay C. Dunlap, Jennifer J. Loros

Dartmouth Scholarship

To understand the role of white collar-2 in theNeurospora circadian clock, we examined alleles ofwc-2 thought to encode partially functional proteins. We found that wc-2 allele ER24 contained a conservative mutation in the zinc finger. This mutation results in reduced levels of circadian rhythm-critical clock gene products, frq mRNA and FRQ protein, and in a lengthened period of the circadian clock. In addition, this mutation altered a second canonical property of the clock, temperature compensation: as temperature increased, period length decreased substantially. This temperature compensation defect correlated with a temperature-dependent increase in overall FRQ protein levels, with the …


The Growth Of Simian Virus 40 (Sv40) Host Range/Adenovirus Helper Function Mutants In An African Green Monkey Cell Line That Constitutively Expresses The Sv40 Agnoprotein., Terryl P. Stacy, Michele Chamberlain, Susan Carswell, Charles N. Cole Jul 1990

The Growth Of Simian Virus 40 (Sv40) Host Range/Adenovirus Helper Function Mutants In An African Green Monkey Cell Line That Constitutively Expresses The Sv40 Agnoprotein., Terryl P. Stacy, Michele Chamberlain, Susan Carswell, Charles N. Cole

Dartmouth Scholarship

The simian virus 40 T-antigen carboxy-terminal mutants, dlA2459 and dlA2475, are cell line and temperature dependent for growth and plaque formation in monkey kidney cells. Although these mutants did form plaques on BSC-1 cells at 37 degrees C, they were about fivefold less efficient for plaque formation than wild-type simian virus 40. These mutants did not grow in CV-1 cells and did not synthesize agnoprotein in those cells. CV-1 cells which constitutively express the agnoprotein were permissive for mutant plaque formation. However, late mRNAs, virion proteins, and progeny virion yields did not accumulate to wild-type levels during mutant infection of …