Open Access. Powered by Scholars. Published by Universities.®

Medical Biochemistry Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 30 of 38

Full-Text Articles in Medical Biochemistry

Eisosomes Provide Membrane Reservoirs For Rapid Expansion Of The Yeast Plasma Membrane, Ruth Kabeche, Louisa Howard, James B. Moseley Sep 2015

Eisosomes Provide Membrane Reservoirs For Rapid Expansion Of The Yeast Plasma Membrane, Ruth Kabeche, Louisa Howard, James B. Moseley

Dartmouth Scholarship

Cell surface area rapidly increases during mechanical and hypoosmotic stresses. Such expansion of the plasma membrane requires 'membrane reservoirs' that provide surface area and buffer membrane tension, but the sources of this membrane remain poorly understood. In principle, the flattening of invaginations and buds within the plasma membrane could provide this additional surface area, as recently shown for caveolae in animal cells. Here, we used microfluidics to study the rapid expansion of the yeast plasma membrane in protoplasts, which lack the rigid cell wall. To survive hypoosmotic stress, yeast cell protoplasts required eisosomes, protein-based structures that generate long invaginations at …


Stag2 Promotes Error Correction In Mitosis By Regulating Kinetochore–Microtubule Attachments, Marianna Kleyman, Lilian Kabeche, Duane A. Compton Jul 2014

Stag2 Promotes Error Correction In Mitosis By Regulating Kinetochore–Microtubule Attachments, Marianna Kleyman, Lilian Kabeche, Duane A. Compton

Dartmouth Scholarship

Mutations in the STAG2 gene are present in ∼20% of tumors from different tissues of origin. STAG2 encodes a subunit of the cohesin complex, and tumors with loss-of-function mutations are usually aneuploid and display elevated frequencies of lagging chromosomes during anaphase. Lagging chromosomes are a hallmark of chromosomal instability (CIN) arising from persistent errors in kinetochore-microtubule (kMT) attachment. To determine whether the loss of STAG2 increases the rate of formation of kMT attachment errors or decreases the rate of their correction, we examined mitosis in STAG2-deficient cells. STAG2 depletion does not impair bipolar spindle formation or delay mitotic progression. Instead, …


Novel Roles For Actin In Mitochondrial Fission, Anna L. Hatch, Pinar S. Gurel, Henry N. Higgs Jan 2014

Novel Roles For Actin In Mitochondrial Fission, Anna L. Hatch, Pinar S. Gurel, Henry N. Higgs

Dartmouth Scholarship

Mitochondrial dynamics, including fusion, fission and translocation, are crucial to cellular homeostasis, with roles in cellular polarity, stress response and apoptosis. Mitochondrial fission has received particular attention, owing to links with several neurodegenerative diseases. A central player in fission is the cytoplasmic dynamin-related GTPase Drp1, which oligomerizes at the fission site and hydrolyzes GTP to drive membrane ingression. Drp1 recruitment to the outer mitochondrial membrane (OMM) is a key regulatory event, which appears to require a pre-constriction step in which the endoplasmic reticulum (ER) and mitochondrion interact extensively, a process termed ERMD (ER-associated mitochondrial division). It is unclear how ER-mitochondrial …


A Pil1–Sle1–Syj1–Tax4 Functional Pathway Links Eisosomes With Pi(4,5)P2 Regulation, Ruth Kabeche, Assen Roguev, Nevan J. Krogan, James B. Moseley Dec 2013

A Pil1–Sle1–Syj1–Tax4 Functional Pathway Links Eisosomes With Pi(4,5)P2 Regulation, Ruth Kabeche, Assen Roguev, Nevan J. Krogan, James B. Moseley

Dartmouth Scholarship

Stable compartments of the plasma membrane promote a wide range of cellular functions. In yeast cells, cytosolic structures called eisosomes generate prominent cortical invaginations of unknown function. Through a series of genetic screens in fission yeast, we found that the eisosome proteins Pil1 and Sle1 function with the synaptojanin-like lipid phosphatase Syj1 and its ligand Tax4. This genetic pathway connects eisosome function with the hydrolysis of phosphatidylinositol (4,5)-bisphosphate [PI(4,5)P2] in cells. Defects in PI(4,5)P2 regulation led to eisosome defects, and we found that the core eisosome protein Pil1 can bind to and tubulate liposomes containing PI(4,5)P2. Mutations in components of …


Mediator Influences Telomeric Silencing And Cellular Life Span, Xuefeng Zhu, Beidong Liu, Jonas O. P. Carlsten, Jenny Beve, Thomas Nyström, Lawrence C. Myers, Claes M. Gustafsson Jun 2011

Mediator Influences Telomeric Silencing And Cellular Life Span, Xuefeng Zhu, Beidong Liu, Jonas O. P. Carlsten, Jenny Beve, Thomas Nyström, Lawrence C. Myers, Claes M. Gustafsson

Dartmouth Scholarship

The Mediator complex is required for the regulated transcription of nearly all RNA polymerase II-dependent genes. Here we demonstrate a new role for Mediator which appears to be separate from its function as a transcriptional coactivator. Mediator associates directly with heterochromatin at telomeres and influences the exact boundary between active and inactive chromatin. Loss of the Mediator Med5 subunit or mutations in Med7 cause a depletion of the complex from regions located near subtelomeric X elements, which leads to a change in the balance between the Sir2 and Sas2 proteins. These changes in turn result in increased levels of H4K16 …


Chloroquine Treatment Of Arpe-19 Cells Leads To Lysosome Dilation And Intracellular Lipid Accumulation: Possible Implications Of Lysosomal Dysfunction In Macular Degeneration, Patrick M. Chen, Zoë J. Gombart, Jeff W. Chen Mar 2011

Chloroquine Treatment Of Arpe-19 Cells Leads To Lysosome Dilation And Intracellular Lipid Accumulation: Possible Implications Of Lysosomal Dysfunction In Macular Degeneration, Patrick M. Chen, Zoë J. Gombart, Jeff W. Chen

Dartmouth Scholarship

Age-related macular degeneration (AMD) is the leading cause of vision loss in elderly people over 60. The pathogenesis is still unclear. It has been suggested that lysosomal stress may lead to drusen formation, a biomarker of AMD. In this study, ARPE-19 cells were treated with chloroquine to inhibit lysosomal function. Chloroquine-treated ARPE-19 cells demonstrate a marked increase in vacuolation and dense intracellular debris. These are identified as chloroquine-dilated lysosomes and lipid bodies with LAMP-2 and LipidTOX co-localization, respectively. Dilation is an indicator of lysosomal dysfunction. Chloroquine disrupts uptake of exogenously applied rhodamine-labeled dextran by these cells. This suggests a disruption …


Proliferation Of Aneuploid Human Cells Is Limited By A P53-Dependent Mechanism, Sarah L. Thompson, Duane A. Compton Jan 2010

Proliferation Of Aneuploid Human Cells Is Limited By A P53-Dependent Mechanism, Sarah L. Thompson, Duane A. Compton

Dartmouth Scholarship

Most solid tumors are aneuploid, and it has been proposed that aneuploidy is the consequence of an elevated rate of chromosome missegregation in a process called chromosomal instability (CIN). However, the relationship of aneuploidy and CIN is unclear because the proliferation of cultured diploid cells is compromised by chromosome missegregation. The mechanism for this intolerance of nondiploid genomes is unknown. In this study, we show that in otherwise diploid human cells, chromosome missegregation causes a cell cycle delay with nuclear accumulation of the tumor suppressor p53 and the cyclin kinase inhibitor p21. Deletion of the p53 gene permits the accumulation …


Transport Of Ldl-Derived Cholesterol From The Npc1 Compartment To The Er Involves The Trans-Golgi Network And The Snare Protein Complex, Yasuomi Urano, Hiroshi Watanabe, Stephanie R. Murphy, Yohei Shibuya, Yong Geng, Andrew Peden, Catherine Chang, Ta Yuan Chang Oct 2008

Transport Of Ldl-Derived Cholesterol From The Npc1 Compartment To The Er Involves The Trans-Golgi Network And The Snare Protein Complex, Yasuomi Urano, Hiroshi Watanabe, Stephanie R. Murphy, Yohei Shibuya, Yong Geng, Andrew Peden, Catherine Chang, Ta Yuan Chang

Dartmouth Scholarship

Mammalian cells acquire cholesterol mainly from LDL. LDL enter the endosomes, allowing cholesteryl esters to be hydrolyzed by acid lipase. The hydrolyzed cholesterol (LDL-CHOL) enters the Niemann-Pick type C1 (NPC1)-containing endosomal compartment en route to various destinations. Whether the Golgi is involved in LDL-CHOL transport downstream of the NPC1 compartment has not been demonstrated. Using subcellular fractionation and immunoadsorption to enrich for specific membrane fractions, here we show that, when parental Chinese hamster ovary (CHO) cells are briefly exposed to (3)H-cholesteryl linoleate (CL) labeled-LDL, newly liberated (3)H-LDL-CHOL appears in membranes rich in trans-Golgi network (TGN) long before it becomes available …


The Caenorhabditis Elegans Heterochronic Regulator Lin-14 Is A Novel Transcription Factor That Controls The Developmental Timing Of Transcription From The Insulin/Insulin-Like Growth Factor Gene Ins-33 By Direct Dna Binding, Marta Hristova, Darcy Birse, Yang Hong, Victor Ambros Dec 2005

The Caenorhabditis Elegans Heterochronic Regulator Lin-14 Is A Novel Transcription Factor That Controls The Developmental Timing Of Transcription From The Insulin/Insulin-Like Growth Factor Gene Ins-33 By Direct Dna Binding, Marta Hristova, Darcy Birse, Yang Hong, Victor Ambros

Dartmouth Scholarship

A temporal gradient of the novel nuclear protein LIN-14 specifies the timing and sequence of stage-specific developmental events in Caenorhabditis elegans. The profound effects of lin-14 mutations on worm development suggest that LIN-14 directly or indirectly regulates stage-specific gene expression. We show that LIN-14 can associate with chromatin in vivo and has in vitro DNA binding activity. A bacterially expressed C-terminal domain of LIN-14 was used to select DNA sequences that contain a putative consensus binding site from a pool of randomized double-stranded oligonucleotides. To identify candidates for genes directly regulated by lin-14, we employed DNA microarray hybridization to compare …


Interdependent Assembly Of Specific Regulatory Lipids And Membrane Fusion Proteins Into The Vertex Ring Domain Of Docked Vacuoles, Rutilio A. Fratti, Youngsoo Jun, Alexey J. Merz, Nathan Margolis, William Wickner Dec 2004

Interdependent Assembly Of Specific Regulatory Lipids And Membrane Fusion Proteins Into The Vertex Ring Domain Of Docked Vacuoles, Rutilio A. Fratti, Youngsoo Jun, Alexey J. Merz, Nathan Margolis, William Wickner

Dartmouth Scholarship

Membrane microdomains are assembled by lipid partitioning (e.g., rafts) or by protein-protein interactions (e.g., coated vesicles). During docking, yeast vacuoles assemble "vertex" ring-shaped microdomains around the periphery of their apposed membranes. Vertices are selectively enriched in the Rab GTPase Ypt7p, the homotypic fusion and vacuole protein sorting complex (HOPS)-VpsC Rab effector complex, SNAREs, and actin. Membrane fusion initiates at vertex microdomains. We now find that the "regulatory lipids" ergosterol, diacylglycerol and 3- and 4-phosphoinositides accumulate at vertices in a mutually interdependent manner. Regulatory lipids are also required for the vertex enrichment of SNAREs, Ypt7p, and HOPS. Conversely, SNAREs and actin …


Trans-Snare Interactions Elicit Ca2+ Efflux From The Yeast Vacuole Lumen, Alexey J. Merz, William T. Wickner Jan 2004

Trans-Snare Interactions Elicit Ca2+ Efflux From The Yeast Vacuole Lumen, Alexey J. Merz, William T. Wickner

Dartmouth Scholarship

Ca2+ transients trigger many SNARE-dependent membrane fusion events. The homotypic fusion of yeast vacuoles occurs after a release of lumenal Ca2+. Here, we show that trans-SNARE interactions promote the release of Ca2+ from the vacuole lumen. Ypt7p-GTP, the Sec1p/Munc18-protein Vps33p, and Rho GTPases, all of which function during docking, are required for Ca2+ release. Inhibitors of SNARE function prevent Ca2+ release. Recombinant Vam7p, a soluble Q-SNARE, stimulates Ca2+ release. Vacuoles lacking either of two complementary SNAREs, Vam3p or Nyv1p, fail to release Ca2+ upon tethering. Mixing these two vacuole populations together allows Vam3p and Nyv1p to interact in trans and …


Remodeling Of Organelle-Bound Actin Is Required For Yeast Vacuole Fusion, Gary Eitzen, Li Wang, Naomi Thorngren, William Wickner Aug 2002

Remodeling Of Organelle-Bound Actin Is Required For Yeast Vacuole Fusion, Gary Eitzen, Li Wang, Naomi Thorngren, William Wickner

Dartmouth Scholarship

Actin participates in several intracellular trafficking pathways. We now find that actin, bound to the surface of purified yeast vacuoles in the absence of cytosol or cytoskeleton, regulates the last compartment mixing stage of homotypic vacuole fusion. The Cdc42p GTPase is known to be required for vacuole fusion. We now show that proteins of the Cdc42p-regulated actin remodeling cascade (Cdc42p --> Cla4p --> Las17p/Vrp1p --> Arp2/3 complex --> actin) are enriched on isolated vacuoles. Vacuole fusion is dramatically altered by perturbation of the vacuole-bound actin, either by mutation of the ACT1 gene, addition of specific actin ligands such as latrunculin …


Distinct Retrieval And Retention Mechanisms Are Required For The Quality Control Of Endoplasmic Reticulum Protein Folding, Shilpa Vashist, Woong Kim, William J. Belden, Eric D. Spear, Charles Barlowe, Davis T.W. Ng Oct 2001

Distinct Retrieval And Retention Mechanisms Are Required For The Quality Control Of Endoplasmic Reticulum Protein Folding, Shilpa Vashist, Woong Kim, William J. Belden, Eric D. Spear, Charles Barlowe, Davis T.W. Ng

Dartmouth Scholarship

Proteins destined for the secretory pathway must first fold and assemble in the lumen of endoplasmic reticulum (ER). The pathway maintains a quality control mechanism to assure that aberrantly processed proteins are not delivered to their sites of function. As part of this mechanism, misfolded proteins are returned to the cytosol via the ER protein translocation pore where they are ubiquitinated and degraded by the 26S proteasome. Previously, little was known regarding the recognition and targeting of proteins before degradation. By tracking the fate of several mutant proteins subject to quality control, we demonstrate the existence of two distinct sorting …


The Chromokinesin Kid Is Necessary For Chromosome Arm Orientation And Oscillation, But Not Congression, On Mitotic Spindles, Aime A. Levesque, Duane A. Compton Sep 2001

The Chromokinesin Kid Is Necessary For Chromosome Arm Orientation And Oscillation, But Not Congression, On Mitotic Spindles, Aime A. Levesque, Duane A. Compton

Dartmouth Scholarship

Chromokinesins have been postulated to provide the polar ejection force needed for chromosome congression during mitosis. We have evaluated that possibility by monitoring chromosome movement in vertebrate-cultured cells using time-lapse differential interference contrast microscopy after microinjection with antibodies specific for the chromokinesin Kid. 17.5% of cells injected with Kid-specific antibodies have one or more chromosomes that remain closely opposed to a spindle pole and fail to enter anaphase. In contrast, 82.5% of injected cells align chromosomes in metaphase, progress to anaphase, and display chromosome velocities not significantly different from control cells. However, injected cells lack chromosome oscillations, and chromosome orientation …


A Ypt/Rab Effector Complex Containing The Sec1 Homolog Vps33p Is Required For Homotypic Vacuole Fusion, Darren F. Seals, Gary Eitzen, Nathan Margolis, William T. Wickner, Albert Price Aug 2000

A Ypt/Rab Effector Complex Containing The Sec1 Homolog Vps33p Is Required For Homotypic Vacuole Fusion, Darren F. Seals, Gary Eitzen, Nathan Margolis, William T. Wickner, Albert Price

Dartmouth Scholarship

Yeast vacuoles undergo priming, docking, and homotypic fusion, although little has been known of the connections between these reactions. Vacuole-associated Vam2p and Vam6p (Vam2/6p) are components of a 65S complex containing SNARE proteins. Upon priming by Sec18p/NSF and ATP, Vam2/6p is released as a 38S subcomplex that binds Ypt7p to initiate docking. We now report that the 38S complex consists of both Vam2/6p and the class C Vps proteins [Reider, S. E. and Emr, S. D. (1997) Mol. Biol. Cell 8, 2307-2327]. This complex includes Vps33p, a member of the Sec1 family of proteins that bind t-SNAREs. We term this …


Asymmetric Requirements For A Rab Gtpase And Snare Proteins In Fusion Of Copii Vesicles With Acceptor Membranes, Xiaochun Cao, Charles Barlowe Apr 2000

Asymmetric Requirements For A Rab Gtpase And Snare Proteins In Fusion Of Copii Vesicles With Acceptor Membranes, Xiaochun Cao, Charles Barlowe

Dartmouth Scholarship

Soluble NSF attachment protein receptor (SNARE) proteins are essential for membrane fusion in transport between the yeast ER and Golgi compartments. Subcellular fractionation experiments demonstrate that the ER/Golgi SNAREs Bos1p, Sec22p, Bet1p, Sed5p, and the Rab protein, Ypt1p, are distributed similarly but localize primarily with Golgi membranes. All of these SNARE proteins are efficiently packaged into COPII vesicles and suggest a dynamic cycling of SNARE machinery between ER and Golgi compartments. Ypt1p is not efficiently packaged into vesicles under these conditions. To determine in which membranes protein function is required, temperature-sensitive alleles of BOS1, BET1, SED5, SLY1, and YPT1 that …


Auto-Inhibition Of Ets-1 Is Counteracted By Dna Binding Cooperativity With Core-Binding Factor Α2, Tamara L. Goetz, Ting-Lei Gu, Nancy A. Speck, Barbara J. Graves Jan 2000

Auto-Inhibition Of Ets-1 Is Counteracted By Dna Binding Cooperativity With Core-Binding Factor Α2, Tamara L. Goetz, Ting-Lei Gu, Nancy A. Speck, Barbara J. Graves

Dartmouth Scholarship

Auto-inhibition is a common transcriptional control mechanism that is well characterized in the regulatory transcription factor Ets-1. Autoinhibition of Ets-1 DNA binding works through an inhibitory module that exists in two conformations. DNA binding requires a change in the inhibitory module from the packed to disrupted conformation. This structural switch provides a mechanism to tightly regulate Ets-1 DNA binding. We report that the Ets-1 partner protein core-binding factor α2 (CBFα2; also known as AML1 or PEBP2) stimulates Ets-1 DNA binding and counteracts auto-inhibition. Support for this conclusion came from three observations. First, the level of cooperative DNA binding (10-fold) was …


Three V-Snares And Two T-Snares, Present In A Pentameric Cis-Snare Complex On Isolated Vacuoles, Are Essential For Homotypic Fusion, Christian Ungermann, Gabriele F. Von Mollard, Ole N. Jensen, Nathan Margolis, Tom H. Stevens, William Wickner Jun 1999

Three V-Snares And Two T-Snares, Present In A Pentameric Cis-Snare Complex On Isolated Vacuoles, Are Essential For Homotypic Fusion, Christian Ungermann, Gabriele F. Von Mollard, Ole N. Jensen, Nathan Margolis, Tom H. Stevens, William Wickner

Dartmouth Scholarship

Vacuole SNAREs, including the t-SNAREs Vam3p and Vam7p and the v-SNARE Nyv1p, are found in a multisubunit "cis" complex on isolated organelles. We now identify the v-SNAREs Vti1p and Ykt6p by mass spectrometry as additional components of the immunoisolated vacuolar SNARE complex. Immunodepletion of detergent extracts with anti-Vti1p removes all the Ykt6p that is in a complex with Vam3p, immunodepletion with anti-Ykt6p removes all the Vti1p that is complexed with Vam3p, and immunodepletion with anti-Nyv1p removes all the Ykt6p in complex with other SNAREs, demonstrating that they are all together in the same cis multi-SNARE complex. After priming, which disassembles …


A Vacuolar V–T-Snare Complex, The Predominant Form In Vivo And On Isolated Vacuoles, Is Disassembled And Activated For Docking And Fusion, Christian Ungermann, Benjamin J. Nichols, Hugh R. B. Pelham, William Wickner Jan 1998

A Vacuolar V–T-Snare Complex, The Predominant Form In Vivo And On Isolated Vacuoles, Is Disassembled And Activated For Docking And Fusion, Christian Ungermann, Benjamin J. Nichols, Hugh R. B. Pelham, William Wickner

Dartmouth Scholarship

Homotypic vacuole fusion in yeast requires Sec18p (N-ethylmaleimide-sensitive fusion protein [NSF]), Sec17p (soluble NSF attachment protein [alpha-SNAP]), and typical vesicle (v) and target membrane (t) SNAP receptors (SNAREs). We now report that vacuolar v- and t-SNAREs are mainly found with Sec17p as v-t-SNARE complexes in vivo and on purified vacuoles rather than only transiently forming such complexes during docking, and disrupting them upon fusion. In the priming reaction, Sec18p and ATP dissociate this v-t-SNARE complex, accompanied by the release of Sec17p. SNARE complex structure governs each functional aspect of priming, as the v-SNARE regulates the rate of Sec17p release and, …


Mitotic Spindle Poles Are Organized By Structural And Motor Proteins In Addition To Centrosomes, Tirso Gaglio, Mary A. Dionne, Duane A. Duane A. Compton Sep 1997

Mitotic Spindle Poles Are Organized By Structural And Motor Proteins In Addition To Centrosomes, Tirso Gaglio, Mary A. Dionne, Duane A. Duane A. Compton

Dartmouth Scholarship

The focusing of microtubules into mitotic spindle poles in vertebrate somatic cells has been assumed to be the consequence of their nucleation from centrosomes. Contrary to this simple view, in this article we show that an antibody recognizing the light intermediate chain of cytoplasmic dynein (70.1) disrupts both the focused organization of microtubule minus ends and the localization of the nuclear mitotic apparatus protein at spindle poles when injected into cultured cells during metaphase, despite the presence of centrosomes. Examination of the effects of this dynein-specific antibody both in vitro using a cell-free system for mitotic aster assembly and in …


Sqt1, Which Encodes An Essential Wd Domain Protein Of Saccharomyces Cerevisiae, Suppresses Dominant-Negative Mutations Of The Ribosomal Protein Gene Qsr1., Dominic P. Eisinger, Frederick A. Dick, Elke Denke, Bernard L. Trumpower Sep 1997

Sqt1, Which Encodes An Essential Wd Domain Protein Of Saccharomyces Cerevisiae, Suppresses Dominant-Negative Mutations Of The Ribosomal Protein Gene Qsr1., Dominic P. Eisinger, Frederick A. Dick, Elke Denke, Bernard L. Trumpower

Dartmouth Scholarship

QSR1 is an essential Saccharomyces cerevisiae gene, which encodes a 60S ribosomal subunit protein required for joining of 40S and 60S subunits. Truncations of QSR1 predicted to encode C-terminally truncated forms of Qsr1p do not substitute for QSR1 but do act as dominant negative mutations, inhibiting the growth of yeast when expressed from an inducible promoter. The dominant negative mutants exhibit a polysome profile characterized by 'half-mer' polysomes, indicative of a subunit joining defect like that seen in other qsr1 mutants (D. P. Eisinger, F. A. Dick, and B. L. Trumpower, Mol. Cell. Biol. 17:5136-5145, 1997.) By screening a high-copy …


Qsr1p, A 60s Ribosomal Subunit Protein, Is Required For Joining Of 40s And 60s Subunits., Dominic P. Eisinger, Frederick A. Dick, Bernard L. Trumpower Sep 1997

Qsr1p, A 60s Ribosomal Subunit Protein, Is Required For Joining Of 40s And 60s Subunits., Dominic P. Eisinger, Frederick A. Dick, Bernard L. Trumpower

Dartmouth Scholarship

QSR1 is a recently discovered, essential Saccharomyces cerevisiae gene, which encodes a 60S ribosomal subunit protein. Thirty-one unique temperature-sensitive alleles of QSR1 were generated by regional codon randomization within a conserved 20-amino-acid sequence of the QSR1-encoded protein. The temperature-sensitive mutants arrest as viable, large, unbudded cells 24 to 48 h after a shift to 37 degrees C. Polysome and ribosomal subunit analysis by velocity gradient centrifugation of lysates from temperature-sensitive qsr1 mutants and from cells in which Qsr1p was depleted by down regulation of an inducible promoter revealed the presence of half-mer polysomes and a large pool of free 60S …


Identification Of A Novel Antiapoptotic Functional Domain In Simian Virus 40 Large T Antigen., Suzanne D. Conzen, Christine A. Snay, Charles N. Cole Jun 1997

Identification Of A Novel Antiapoptotic Functional Domain In Simian Virus 40 Large T Antigen., Suzanne D. Conzen, Christine A. Snay, Charles N. Cole

Dartmouth Scholarship

The ability of DNA tumor virus proteins to trigger apoptosis in mammalian cells is well established. For example, transgenic expression of a simian virus 40 (SV40) T-antigen N-terminal fragment (N-termTag) is known to induce apoptosis in choroid plexus epithelial cells. SV40 T-antigen-induced apoptosis has generally been considered to be a p53-dependent event because cell death in the brain is greatly diminished in a p53-/- background strain and is abrogated by expression of wild-type (p53-binding) SV40 T antigen. We now show that while N-termTags triggered apoptosis in rat embryo fibroblasts cultured in low serum, expression of full-length T antigens unable to …


C-Terminal Truncations Of The Yeast Nucleoporin Nup145p Produce A Rapid Temperature-Conditional Mrna Export Defect And Alterations To Nuclear Structure., Thomas C. Dockendorff, Catherine V. Heath, Alan L. Goldstein, Christine A. Snay, C N. Cole Feb 1997

C-Terminal Truncations Of The Yeast Nucleoporin Nup145p Produce A Rapid Temperature-Conditional Mrna Export Defect And Alterations To Nuclear Structure., Thomas C. Dockendorff, Catherine V. Heath, Alan L. Goldstein, Christine A. Snay, C N. Cole

Dartmouth Scholarship

A screen for temperature-sensitive mutants of Saccharomyces cerevisiae defective in nucleocytoplasmic trafficking of poly(A)+ RNA has identified an allele of the NUP145 gene, which encodes an essential nucleoporin. NUP145 was previously identified by using a genetic synthetic lethal screen (E. Fabre, W. C. Boelens, C. Wimmer, I. W. Mattaj, and E. C. Hurt, Cell 78:275-289, 1994) and by using a monoclonal antibody which recognizes the GLFG family of vertebrate and yeast nucleoporins (S. R. Wente and G. Blobel, J. Cell Biol. 125:955-969, 1994). Cells carrying the new allele, nup145-10, grew at 23 and 30 degrees C but were unable to …


Analysis Of Mutant Platelet-Derived Growth Factor Receptors Expressed In Pc12 Cells Identifies Signals Governing Sodium Channel Induction During Neuronal Differentiation., Gary R. Fanger, Richard R. Vaillancourt, Lynn E. Heasley, Jean-Pierre P. Montmayeur, Gary L. Johnson, Robert A. Maue Jan 1997

Analysis Of Mutant Platelet-Derived Growth Factor Receptors Expressed In Pc12 Cells Identifies Signals Governing Sodium Channel Induction During Neuronal Differentiation., Gary R. Fanger, Richard R. Vaillancourt, Lynn E. Heasley, Jean-Pierre P. Montmayeur, Gary L. Johnson, Robert A. Maue

Dartmouth Scholarship

The mechanisms governing neuronal differentiation, including the signals underlying the induction of voltage-dependent sodium (Na+) channel expression by neurotrophic factors, which occurs independent of Ras activity, are not well understood. Therefore, Na+ channel induction was analyzed in sublines of PC12 cells stably expressing platelet-derived growth factor (PDGF) beta receptors with mutations that eliminate activation of specific signalling molecules. Mutations eliminating activation of phosphatidylinositol 3-kinase (PI3K), phospholipase C gamma (PLC gamma), the GTPase-activating protein (GAP), and Syp phosphatase failed to diminish the induction of type II Na+ channel alpha-subunit mRNA and functional Na+ channel expression by PDGF, as determined by RNase …


Distinct Cis-Acting Elements Mediate Clock, Light, And Developmental Regulation Of The Neurospora Crassa Eas (Ccg-2) Gene., Deborah Bell-Pedersen, Jay C. Dunlap, Jennifer J. Loros Feb 1996

Distinct Cis-Acting Elements Mediate Clock, Light, And Developmental Regulation Of The Neurospora Crassa Eas (Ccg-2) Gene., Deborah Bell-Pedersen, Jay C. Dunlap, Jennifer J. Loros

Dartmouth Scholarship

The Neurospora crassa eas (ccg-2) gene, which encodes a fungal hydrophobin, is transcriptionally regulated by the circadian clock. In addition, eas (ccg-2) is positively regulated by light and transcripts accumulate during asexual development. To sort out the basis of this complex regulation, deletion analyses of the eas (ccg-2) promoter were carried out to localize the cis-acting elements mediating clock, light, and developmental control. The primary sequence determinants of a positive activating clock element (ACE) were found to reside in a 45-bp region, just upstream from the TATA box. Using a novel unregulated promoter/reporter system developed for this study, we show …


Gtpase-Deficient G Alpha 16 And G Alpha Q Induce Pc12 Cell Differentiation And Persistent Activation Of Cjun Nh2-Terminal Kinases., Lynn E. Heasley, Brooke Storey, Gary R. Fanger, Laura Butterfield, J Zamarripa, D Blumberg, R A. Maue Feb 1996

Gtpase-Deficient G Alpha 16 And G Alpha Q Induce Pc12 Cell Differentiation And Persistent Activation Of Cjun Nh2-Terminal Kinases., Lynn E. Heasley, Brooke Storey, Gary R. Fanger, Laura Butterfield, J Zamarripa, D Blumberg, R A. Maue

Dartmouth Scholarship

Persistent stimulation of specific protein kinase pathways has been proposed as a key feature of receptor tyrosine kinases and intracellular oncoproteins that signal neuronal differentiation of rat pheochromocytoma (PC12) cells. Among the protein serine/threonine kinases identified to date, the p42/44 mitogen-activated protein (MAP) kinases have been highlighted for their potential role in signalling PC12 cell differentiation. We report here that retrovirus-mediated expression of GTPase-deficient, constitutively active forms of the heterotrimeric Gq family members, G alpha qQ209L and G alpha 16Q212L, in PC12 cells induces neuronal differentiation as indicated by neurite outgrowth and the increased expression of voltage-dependent sodium channels. Differentiation …


Gas1-Induced Growth Suppression Requires A Transactivation-Independent P53 Function., Giannino Del Sal, Elisabetta M. Ruaro, Rene Utrera, Charles N. Cole Dec 1995

Gas1-Induced Growth Suppression Requires A Transactivation-Independent P53 Function., Giannino Del Sal, Elisabetta M. Ruaro, Rene Utrera, Charles N. Cole

Dartmouth Scholarship

In normal cells, induction of quiescence is accompanied by the increased expression of growth arrest-specific genes (gas). One of them, gas1, is regulated at the transcriptional level and codes for a membrane-associated protein (Gas1) which is down regulated during the G0-to-S phase transition in serum-stimulated cells. Gas1 is not expressed in growing or transformed cells, and when overexpressed in normal fibroblasts, it blocks the G0-to-S phase transition. Moreover, Gas1 blocks cell proliferation in several transformed cells with the exception of simian virus 40- or adenovirus-transformed cell lines. In this paper, we demonstrate that overexpression of Gas1 blocks cell proliferation in …


Transactivation Of The Moloney Murine Leukemia Virus And T-Cell Receptor Beta-Chain Enhancers By Cbf And Ets Requires Intact Binding Sites For Both Proteins., Wanwen Sun, Barbara J. Graves, Nancy A. Speck Aug 1995

Transactivation Of The Moloney Murine Leukemia Virus And T-Cell Receptor Beta-Chain Enhancers By Cbf And Ets Requires Intact Binding Sites For Both Proteins., Wanwen Sun, Barbara J. Graves, Nancy A. Speck

Dartmouth Scholarship

The Moloney murine leukemia virus (Mo-MLV) enhancer contains binding sites (LVb and LVc) for the ets gene family of proteins and a core site that binds the polyomavirus enhancer-binding protein 2/core-binding factor (cbf) family of proteins. The LVb and core sites in the Mo-MLV enhancer contribute to its constitutive activity in T cells. All three binding sites (LVb, LVc, and core) are required for phorbol ester inducibility of the Mo-MLV enhancer. Adjacent binding sites for the ets and cbf proteins likewise constitute a phorbol ester response element within the human T-cell receptor beta-chain (TCR beta) enhancer and contribute to constitutive …


Cooperative Binding Of Ets-1 And Core Binding Factor To Dna., David Wotton, Jacques Ghysdael, Shuwen Wang, Nancy A. Speck, Michael J. Owen Jan 1994

Cooperative Binding Of Ets-1 And Core Binding Factor To Dna., David Wotton, Jacques Ghysdael, Shuwen Wang, Nancy A. Speck, Michael J. Owen

Dartmouth Scholarship

Two phorbol ester-inducible elements (beta E2 and beta E3) within the human T-cell receptor beta gene enhancer each contain consensus binding sites for the Ets and core binding factor (CBF) transcription factor families. Recombinant Ets-1 and purified CBF bound individually to beta E2 and beta E3, in which the Ets and core sites are directly adjacent. In this report, we show that CBF and Ets-1 bind together to beta E2 and beta E3 and that Ets-1-CBF-DNA complexes are favored over the binding of either protein alone to beta E2. Formation of Ets-1-CBF-DNA complexes increased the affinity of Ets-1-DNA interactions and …