Open Access. Powered by Scholars. Published by Universities.®

Medical Biochemistry Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 4 of 4

Full-Text Articles in Medical Biochemistry

A New Class Of Inhibitors Of The Arac Family Virulence Regulator Vibrio Cholerae Toxt, Anne K. Woodbrey, Evans O. Onyango, Maria Pellegrini, Gabriela Kovacikova, Ronald Taylor, Gordon Gribble, F. Jon Kull Mar 2017

A New Class Of Inhibitors Of The Arac Family Virulence Regulator Vibrio Cholerae Toxt, Anne K. Woodbrey, Evans O. Onyango, Maria Pellegrini, Gabriela Kovacikova, Ronald Taylor, Gordon Gribble, F. Jon Kull

Dartmouth Scholarship

Vibrio cholerae is responsible for the diarrheal disease cholera that infects millions of people worldwide. While vaccines protecting against cholera exist, and oral rehydration therapy is an effective treatment method, the disease will remain a global health threat until long-term solutions such as improved sanitation and access to clean water become widely available. Because of this, there is a pressing need for potent therapeutics that can either mitigate cholera symptoms, or act prophylactically to prevent the virulent effects of a cholera infection. Here we report the design, synthesis, and characterization of a set of compounds that bind and inhibit ToxT, …


Epoxide-Mediated Cifr Repression Of Cif Gene Expression Utilizes Two Binding Sites In Pseudomonas Aeruginosa, Alicia E. Ballok, Christopher D. Bahl, Emily L. Dolben, Allia K. Lindsay, Jessica D. St. Laurent, Deborah Hogan, Dean Madden, George A. O'Toole Jul 2012

Epoxide-Mediated Cifr Repression Of Cif Gene Expression Utilizes Two Binding Sites In Pseudomonas Aeruginosa, Alicia E. Ballok, Christopher D. Bahl, Emily L. Dolben, Allia K. Lindsay, Jessica D. St. Laurent, Deborah Hogan, Dean Madden, George A. O'Toole

Dartmouth Scholarship

Pseudomonas aeruginosa secretes an epoxide hydrolase virulence factor that reduces the apical membrane expression of ABC transporters such as the cystic fibrosis transmembrane conductance regulator (CFTR). This virulence factor, named CFTR inhibitory factor (Cif), is regulated by a TetR-family, epoxide-responsive repressor known as CifR via direct binding and repression. We identified two sites of CifR binding in the intergenic space between cifR and morB, the first gene in the operon containing the cif gene. We have mapped these binding sites and found they are 27 bp in length, and they overlap the -10 and +1 sites of both the cifR …


Structure Of Vibrio Cholerae Toxt Reveals A Mechanism For Fatty Acid Regulation Of Virulence Genes, Michael J. Lowden, Karen Skorupski, Maria Pellegrini, Michael G. Chiorazzo, Ronald K. Taylor, F. Jon Kull Feb 2010

Structure Of Vibrio Cholerae Toxt Reveals A Mechanism For Fatty Acid Regulation Of Virulence Genes, Michael J. Lowden, Karen Skorupski, Maria Pellegrini, Michael G. Chiorazzo, Ronald K. Taylor, F. Jon Kull

Dartmouth Scholarship

Cholera is an acute intestinal infection caused by the bacterium Vibrio cholerae. In order for V. cholerae to cause disease, it must produce two virulence factors, the toxin-coregulated pilus (TCP) and cholera toxin (CT), whose expression is controlled by a transcriptional cascade culminating with the expression of the AraC-family regulator, ToxT. We have solved the 1.9 A resolution crystal structure of ToxT, which reveals folds in the N- and C-terminal domains that share a number of features in common with AraC, MarA, and Rob as well as the unexpected presence of a buried 16-carbon fatty acid, cis-palmitoleate. The finding that …


Prion Protein Glycosylation Is Not Required For Strain-Specific Neurotropism, Justin R. Piro, Brent T. Harris, Koren Nishina, Claudio Soto, Rodrigo Morales, Judy R. Rees, Surachai Supattapone Jun 2009

Prion Protein Glycosylation Is Not Required For Strain-Specific Neurotropism, Justin R. Piro, Brent T. Harris, Koren Nishina, Claudio Soto, Rodrigo Morales, Judy R. Rees, Surachai Supattapone

Dartmouth Scholarship

In this study, we tested the hypothesis that the glycosylation of the pathogenic isoform of the prion protein (PrPSc) might encode the selective neurotropism of prion strains. We prepared unglycosylated cellular prion protein (PrPC) substrate molecules from normal mouse brain by treatment with PNGase F and used reconstituted serial protein cyclic misfolding amplification reactions to produce RML and 301C mouse prions containing unglycosylated PrPSc molecules. Both RML- and 301C-derived prions containing unglycosylated PrPSc molecules were infectious to wild-type mice, and neuropathological analysis showed that mice inoculated with these samples maintained strain-specific patterns of PrP …