Open Access. Powered by Scholars. Published by Universities.®

Medical Biochemistry Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Medical Biochemistry

Myeloid Arginase 1 Insufficiency Exacerbates Amyloid-Β Associated Neurodegenerative Pathways And Glial Signatures In A Mouse Model Of Alzheimer’S Disease: A Targeted Transcriptome Analysis, Chao Ma, Jerry B. Hunt, Andrii Kovalenko, Huimin Liang, Maj-Linda B. Selenica, Michael B. Orr, Bei Zhang, John C. Gensel, David J. Feola, Marcia N. Gordon, Dave Morgan, Paula C. Bickford, Daniel C. Lee May 2021

Myeloid Arginase 1 Insufficiency Exacerbates Amyloid-Β Associated Neurodegenerative Pathways And Glial Signatures In A Mouse Model Of Alzheimer’S Disease: A Targeted Transcriptome Analysis, Chao Ma, Jerry B. Hunt, Andrii Kovalenko, Huimin Liang, Maj-Linda B. Selenica, Michael B. Orr, Bei Zhang, John C. Gensel, David J. Feola, Marcia N. Gordon, Dave Morgan, Paula C. Bickford, Daniel C. Lee

Sanders-Brown Center on Aging Faculty Publications

Brain myeloid cells, include infiltrating macrophages and resident microglia, play an essential role in responding to and inducing neurodegenerative diseases, such as Alzheimer’s disease (AD). Genome-wide association studies (GWAS) implicate many AD casual and risk genes enriched in brain myeloid cells. Coordinated arginine metabolism through arginase 1 (Arg1) is critical for brain myeloid cells to perform biological functions, whereas dysregulated arginine metabolism disrupts them. Altered arginine metabolism is proposed as a new biomarker pathway for AD. We previously reported Arg1 deficiency in myeloid biased cells using lysozyme M (LysM) promoter-driven deletion worsened amyloidosis-related neuropathology and behavioral impairment. However, …


Mitochondrial Oxidative And Nitrosative Stress And Alzheimer Disease, D. Allan Butterfield, Debra Boyd-Kimball Sep 2020

Mitochondrial Oxidative And Nitrosative Stress And Alzheimer Disease, D. Allan Butterfield, Debra Boyd-Kimball

Chemistry Faculty Publications

Oxidative and nitrosative stress are widely recognized as critical factors in the pathogenesis and progression of Alzheimer disease (AD) and its earlier stage, amnestic mild cognitive impairment (MCI). A major source of free radicals that lead to oxidative and nitrosative damage is mitochondria. This review paper discusses oxidative and nitrosative stress and markers thereof in the brain, along with redox proteomics, which are techniques that have been pioneered in the Butterfield laboratory. Selected biological alterations in—and oxidative and nitrosative modifications of—mitochondria in AD and MCI and systems of relevance thereof also are presented. The review article concludes with a section …