Open Access. Powered by Scholars. Published by Universities.®

Medical Anatomy Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 14 of 14

Full-Text Articles in Medical Anatomy

Acute Acat1/Soat1 Blockade Increases Mam Cholesterol And Strengthens Er-Mitochondria Connectivity., Taylor C Harned, Radu V Stan, Ze Cao, Rajarshi Chakrabarti, Henry N Higgs, Catherine C Y Chang, Ta Yuan Chang Mar 2023

Acute Acat1/Soat1 Blockade Increases Mam Cholesterol And Strengthens Er-Mitochondria Connectivity., Taylor C Harned, Radu V Stan, Ze Cao, Rajarshi Chakrabarti, Henry N Higgs, Catherine C Y Chang, Ta Yuan Chang

Department of Pathology, Anatomy, and Cell Biology Faculty Papers

Cholesterol is a key component of all mammalian cell membranes. Disruptions in cholesterol metabolism have been observed in the context of various diseases, including neurodegenerative disorders such as Alzheimer's disease (AD). The genetic and pharmacological blockade of acyl-CoA:cholesterol acyltransferase 1/sterol O-acyltransferase 1 (ACAT1/SOAT1), a cholesterol storage enzyme found on the endoplasmic reticulum (ER) and enriched at the mitochondria-associated ER membrane (MAM), has been shown to reduce amyloid pathology and rescue cognitive deficits in mouse models of AD. Additionally, blocking ACAT1/SOAT1 activity stimulates autophagy and lysosomal biogenesis; however, the exact molecular connection between the ACAT1/SOAT1 blockade and these observed benefits remain …


Ros Control Mitochondrial Motility Through P38 And The Motor Adaptor Miro/Trak., Valentina Debattisti, Akos A. Gerencser, Masao Saotome, Sudipto Das, György Hajnóczky Nov 2017

Ros Control Mitochondrial Motility Through P38 And The Motor Adaptor Miro/Trak., Valentina Debattisti, Akos A. Gerencser, Masao Saotome, Sudipto Das, György Hajnóczky

Department of Pathology, Anatomy, and Cell Biology Faculty Papers

Mitochondrial distribution and motility are recognized as central to many cellular functions, but their regulation by signaling mechanisms remains to be elucidated. Here, we report that reactive oxygen species (ROS), either derived from an extracellular source or intracellularly generated, control mitochondrial distribution and function by dose-dependently, specifically, and reversibly decreasing mitochondrial motility in both rat hippocampal primary cultured neurons and cell lines. ROS decrease motility independently of cytoplasmic [Ca2+], mitochondrial membrane potential, or permeability transition pore opening, known effectors of oxidative stress. However, multiple lines of genetic and pharmacological evidence support that a ROS-activated mitogen-activated protein kinase (MAPK), p38α, is …


Nanotubes As Mitochondrial Uncouplers, Patrick G. Sullivan Aug 2013

Nanotubes As Mitochondrial Uncouplers, Patrick G. Sullivan

Neuroscience Faculty Patents

A method of uncoupling mitochondria in a subject including administering nanotubes to the subject in a therapeutically effective amount, wherein the nanotubes are self-rectifying is provided. A method of decreasing reactive oxygen species and decreasing detrimental loading of Ca2+ into mitochondria is provided, including administering a pharmaceutically effective amount of nanotubes into the subject. A method of reducing weight, treating cancer, reducing the effects of traumatic brain injury, or reducing the effects of ageing, in a subject including administering a pharmaceutically effective amount of nanotubes into the subject is also provided.


Micu1 Controls Both The Threshold And Cooperative Activation Of The Mitochondrial Ca(2+) Uniporter., György Csordás, Tünde Golenár, Erin L Seifert, Kimberli J Kamer, Yasemin Sancak, Fabiana Perocchi, Cynthia Moffat, David Weaver, Sergio De La Fuente Perez, Roman Bogorad, Victor Koteliansky, Jeffrey Adijanto, Vamsi K Mootha, György Hajnóczky Jun 2013

Micu1 Controls Both The Threshold And Cooperative Activation Of The Mitochondrial Ca(2+) Uniporter., György Csordás, Tünde Golenár, Erin L Seifert, Kimberli J Kamer, Yasemin Sancak, Fabiana Perocchi, Cynthia Moffat, David Weaver, Sergio De La Fuente Perez, Roman Bogorad, Victor Koteliansky, Jeffrey Adijanto, Vamsi K Mootha, György Hajnóczky

Department of Pathology, Anatomy, and Cell Biology Faculty Papers

Mitochondrial Ca(2+) uptake via the uniporter is central to cell metabolism, signaling, and survival. Recent studies identified MCU as the uniporter's likely pore and MICU1, an EF-hand protein, as its critical regulator. How this complex decodes dynamic cytoplasmic [Ca(2+)] ([Ca(2+)]c) signals, to tune out small [Ca(2+)]c increases yet permit pulse transmission, remains unknown. We report that loss of MICU1 in mouse liver and cultured cells causes mitochondrial Ca(2+) accumulation during small [Ca(2+)]c elevations but an attenuated response to agonist-induced [Ca(2+)]c pulses. The latter reflects loss of positive cooperativity, likely via the EF-hands. MICU1 faces the intermembrane space and responds to …


Nanotubes As Mitochondrial Uncouplers, Patrick G. Sullivan Jan 2013

Nanotubes As Mitochondrial Uncouplers, Patrick G. Sullivan

Neuroscience Faculty Patents

A method of uncoupling mitochondria in a subject including administering nanotubes to the subject in a therapeutically effective amount, wherein the nanotubes are self-rectifying is provided. A method of decreasing reactive oxygen species and decreasing detrimental loading of Ca2+ into mitochondria is provided, including administering a pharmaceutically effective amount of nanotubes into the subject. A method of reducing weight, treating cancer, reducing the effects of traumatic brain injury, or reducing the effects of ageing, in a subject including administering a pharmaceutically effective amount of nanotubes into the subject is also provided.


Nanotubes As Mitochondrial Uncouplers, Patrick G. Sullivan Jan 2013

Nanotubes As Mitochondrial Uncouplers, Patrick G. Sullivan

Neuroscience Faculty Patents

A method of uncoupling mitochondria in a subject including administering nanotubes to the subject in a therapeutically effective amount, wherein the nanotubes are self-rectifying is provided. A method of decreasing reactive oxygen species and decreasing detrimental loading of Ca2+ into mitochondria is provided, including administering a pharmaceutically effective amount of nanotubes into the subject. A method of reducing weight, treating cancer, reducing the effects of traumatic brain injury, or reducing the effects of ageing, in a subject including administering a pharmaceutically effective amount of nanotubes into the subject is also provided.


Nanotubes As Mitochondrial Uncouplers, Patrick G. Sullivan Apr 2011

Nanotubes As Mitochondrial Uncouplers, Patrick G. Sullivan

Neuroscience Faculty Patents

A method of uncoupling mitochondria in a subject including administering nanotubes to the subject in a therapeutically effective amount, wherein the nanotubes are self-rectifying is provided. A method of decreasing reactive oxygen species and decreasing detrimental loading of Ca2+ into mitochondria is provided, including administering a pharmaceutically effective amount of nanotubes into the subject. A method of reducing weight, treating cancer, reducing the effects of traumatic brain injury, or reducing the effects of ageing, in a subject including administering a pharmaceutically effective amount of nanotubes into the subject is also provided.


S-Glutathionylation Activates Stim1 And Alters Mitochondrial Homeostasis., Brian J Hawkins, Krishna M Irrinki, Karthik Mallilankaraman, Yu-Chin Lien, Youjun Wang, Cunnigaiper D Bhanumathy, Ramasamy Subbiah, Michael F Ritchie, Jonathan Soboloff, Yoshihiro Baba, Tomohiro Kurosaki, Suresh K Joseph, Donald L Gill, Muniswamy Madesh Aug 2010

S-Glutathionylation Activates Stim1 And Alters Mitochondrial Homeostasis., Brian J Hawkins, Krishna M Irrinki, Karthik Mallilankaraman, Yu-Chin Lien, Youjun Wang, Cunnigaiper D Bhanumathy, Ramasamy Subbiah, Michael F Ritchie, Jonathan Soboloff, Yoshihiro Baba, Tomohiro Kurosaki, Suresh K Joseph, Donald L Gill, Muniswamy Madesh

Department of Pathology, Anatomy, and Cell Biology Faculty Papers

Oxidant stress influences many cellular processes, including cell growth, differentiation, and cell death. A well-recognized link between these processes and oxidant stress is via alterations in Ca(2+) signaling. However, precisely how oxidants influence Ca(2+) signaling remains unclear. Oxidant stress led to a phenotypic shift in Ca(2+) mobilization from an oscillatory to a sustained elevated pattern via calcium release-activated calcium (CRAC)-mediated capacitive Ca(2+) entry, and stromal interaction molecule 1 (STIM1)- and Orai1-deficient cells are resistant to oxidant stress. Functionally, oxidant-induced Ca(2+) entry alters mitochondrial Ca(2+) handling and bioenergetics and triggers cell death. STIM1 is S-glutathionylated at cysteine 56 in response to …


Age May Be Hazardous To Outcome Following Traumatic Brain Injury: The Mitochondrial Connection, Lesley Knight Gilmer Jan 2009

Age May Be Hazardous To Outcome Following Traumatic Brain Injury: The Mitochondrial Connection, Lesley Knight Gilmer

University of Kentucky Doctoral Dissertations

Older individuals sustaining traumatic brain injury (TBI) experience a much higher incidence of morbidity and mortality. This age-related exacerbated response to neurological insult has been demonstrated experimentally in aged animals, which can serve as a model to combat this devastating clinical problem. The reasons for this worse initial response are unknown but may be related to age-related changes in mitochondrial respiration.

Evidence is shown that mitochondrial dysfunction occurs early following traumatic brain injury (TBI), persists long after the initial insult, and is severitydependent. Synaptic and extrasynaptic mitochondrial fractions display distinct respiration capacities, stressing the importance to analyze these fractions separately. …


The Underlying Mechanism(S) Of Fasting Induced Neuroprotection After Moderate Traumatic Brain Injury, Laurie Michelle Helene Davis Jan 2008

The Underlying Mechanism(S) Of Fasting Induced Neuroprotection After Moderate Traumatic Brain Injury, Laurie Michelle Helene Davis

University of Kentucky Doctoral Dissertations

Traumatic brain injury (TBI) is becoming a national epidemic, as it accounts for 1.5 million cases each year. This disorder affects primarily the young population and elderly. Currently, there is no treatment for TBI, which means that ~2% of the U.S. population is currently living with prolonged neurological damage and dysfunction. Recently, there have been many studies showing that TBI negatively impacts mitochondrial function. It has been proposed that in order to save the cell from destruction mitochondrial function must be preserved. The ketogenic diet, originally designed to mimic fasting physiology, is effective in treating epilepsy. Therefore, we have used …


Selective Role For Superoxide In Insp3 Receptor-Mediated Mitochondrial Dysfunction And Endothelial Apoptosis., Muniswamy Madesh, Brian J Hawkins, Tatyana Milovanova, Cunnigaiper D Bhanumathy, Suresh K Joseph, Satish P Ramachandrarao, Kumar Sharma, Tomohiro Kurosaki, Aron B Fisher Sep 2005

Selective Role For Superoxide In Insp3 Receptor-Mediated Mitochondrial Dysfunction And Endothelial Apoptosis., Muniswamy Madesh, Brian J Hawkins, Tatyana Milovanova, Cunnigaiper D Bhanumathy, Suresh K Joseph, Satish P Ramachandrarao, Kumar Sharma, Tomohiro Kurosaki, Aron B Fisher

Department of Pathology, Anatomy, and Cell Biology Faculty Papers

Reactive oxygen species (ROS) play a divergent role in both cell survival and cell death during ischemia/reperfusion (I/R) injury and associated inflammation. In this study, ROS generation by activated macrophages evoked an intracellular Ca2+ ([Ca2+]i) transient in endothelial cells that was ablated by a combination of superoxide dismutase and an anion channel blocker. [Ca2+]i store depletion, but not extracellular Ca2+ chelation, prevented [Ca2+]i elevation in response to O2*- that was inositol 1,4,5-trisphosphate (InsP3) dependent, and cells lacking the three InsP3 receptor (InsP3R) isoforms failed to display the [Ca2+]i transient. Importantly, the O2*--triggered Ca2+ mobilization preceded a loss in mitochondrial membrane …


Control Of Mitochondrial Motility And Distribution By The Calcium Signal: A Homeostatic Circuit., Muqing Yi, David Weaver, György Hajnóczky Nov 2004

Control Of Mitochondrial Motility And Distribution By The Calcium Signal: A Homeostatic Circuit., Muqing Yi, David Weaver, György Hajnóczky

Department of Pathology, Anatomy, and Cell Biology Faculty Papers

Mitochondria are dynamic organelles in cells. The control of mitochondrial motility by signaling mechanisms and the significance of rapid changes in motility remains elusive. In cardiac myoblasts, mitochondria were observed close to the microtubular array and displayed both short- and long-range movements along microtubules. By clamping cytoplasmic [Ca2+] ([Ca2+]c) at various levels, mitochondrial motility was found to be regulated by Ca2+ in the physiological range. Maximal movement was obtained at resting [Ca2+]c with complete arrest at 1-2 microM. Movement was fully recovered by returning to resting [Ca2+]c, and inhibition could be repeated with no apparent desensitization. The inositol 1,4,5-trisphosphate- or …


Vdac-Dependent Permeabilization Of The Outer Mitochondrial Membrane By Superoxide Induces Rapid And Massive Cytochrome C Release., M Madesh, György Hajnóczky Dec 2001

Vdac-Dependent Permeabilization Of The Outer Mitochondrial Membrane By Superoxide Induces Rapid And Massive Cytochrome C Release., M Madesh, György Hajnóczky

Department of Pathology, Anatomy, and Cell Biology Faculty Papers

Enhanced formation of reactive oxygen species (ROS), superoxide (O2*-), and hydrogen peroxide (H2O2) may result in either apoptosis or other forms of cell death. Here, we studied the mechanisms underlying activation of the apoptotic machinery by ROS. Exposure of permeabilized HepG2 cells to O2*- elicited rapid and massive cytochrome c release (CCR), whereas H2O2 failed to induce any release. Both O2*- and H2O2 promoted activation of the mitochondrial permeability transition pore by Ca2+, but Ca2+-dependent pore opening was not required for O2*--induced CCR. Furthermore, O2*- alone evoked CCR without damage of the inner mitochondrial membrane barrier, as mitochondrial membrane potential …


Eliciting The Low-Activity Aldehyde Dehydrogenase Asian Phenotype By An Antisense Mechanism Results In An Aversion To Ethanol., E Garver, Tu Gc, Q N Cao, M Aini, F Zhou, Y Israel Sep 2001

Eliciting The Low-Activity Aldehyde Dehydrogenase Asian Phenotype By An Antisense Mechanism Results In An Aversion To Ethanol., E Garver, Tu Gc, Q N Cao, M Aini, F Zhou, Y Israel

Department of Pathology, Anatomy, and Cell Biology Faculty Papers

A mutation in the gene encoding for the liver mitochondrial aldehyde dehydrogenase (ALDH2-2), present in some Asian populations, lowers or abolishes the activity of this enzyme and results in elevations in blood acetaldehyde upon ethanol consumption, a phenotype that greatly protects against alcohol abuse and alcoholism. We have determined whether the administration of antisense phosphorothioate oligonucleotides (ASOs) can mimic the low-activity ALDH2-2 Asian phenotype. Rat hepatoma cells incubated for 24 h with an antisense oligonucleotide (ASO-9) showed reductions in ALDH2 mRNA levels of 85% and ALDH2 (half-life of 22 h) activity of 55% equivalent to a >90% inhibition in ALDH2 …