Open Access. Powered by Scholars. Published by Universities.®

Medical Anatomy Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 22 of 22

Full-Text Articles in Medical Anatomy

Investigation Into Cardiac Myhc-Α 334-352-Specific Tcr Transgenic Mice Reveals A Role For Cytotoxic Cd4 T Cells In The Development Of Cardiac Autoimmunity, Meghna Sur, Mahima T. Rasquinha, Kiruthiga Mone, Chandirasegaran Massilamany, Ninaad Lasrado, Channabasavaiah B. Gurumurthy, Raymond A Sobel, Jay Reddy Jan 2024

Investigation Into Cardiac Myhc-Α 334-352-Specific Tcr Transgenic Mice Reveals A Role For Cytotoxic Cd4 T Cells In The Development Of Cardiac Autoimmunity, Meghna Sur, Mahima T. Rasquinha, Kiruthiga Mone, Chandirasegaran Massilamany, Ninaad Lasrado, Channabasavaiah B. Gurumurthy, Raymond A Sobel, Jay Reddy

Journal Articles: Genetics, Cell Biology & Anatomy

Myocarditis is one of the major causes of heart failure in children and young adults and can lead to dilated cardiomyopathy. Lymphocytic myocarditis could result from autoreactive CD4+ and CD8+ T cells, but defining antigen specificity in disease pathogenesis is challenging. To address this issue, we generated T cell receptor (TCR) transgenic (Tg) C57BL/6J mice specific to cardiac myosin heavy chain (Myhc)-α 334-352 and found that Myhc-α-specific TCRs were expressed in both CD4+ and CD8+ T cells. To investigate if the phenotype is more pronounced in a myocarditis-susceptible genetic background, we backcrossed with A/J mice. At …


Acute Acat1/Soat1 Blockade Increases Mam Cholesterol And Strengthens Er-Mitochondria Connectivity., Taylor C Harned, Radu V Stan, Ze Cao, Rajarshi Chakrabarti, Henry N Higgs, Catherine C Y Chang, Ta Yuan Chang Mar 2023

Acute Acat1/Soat1 Blockade Increases Mam Cholesterol And Strengthens Er-Mitochondria Connectivity., Taylor C Harned, Radu V Stan, Ze Cao, Rajarshi Chakrabarti, Henry N Higgs, Catherine C Y Chang, Ta Yuan Chang

Department of Pathology, Anatomy, and Cell Biology Faculty Papers

Cholesterol is a key component of all mammalian cell membranes. Disruptions in cholesterol metabolism have been observed in the context of various diseases, including neurodegenerative disorders such as Alzheimer's disease (AD). The genetic and pharmacological blockade of acyl-CoA:cholesterol acyltransferase 1/sterol O-acyltransferase 1 (ACAT1/SOAT1), a cholesterol storage enzyme found on the endoplasmic reticulum (ER) and enriched at the mitochondria-associated ER membrane (MAM), has been shown to reduce amyloid pathology and rescue cognitive deficits in mouse models of AD. Additionally, blocking ACAT1/SOAT1 activity stimulates autophagy and lysosomal biogenesis; however, the exact molecular connection between the ACAT1/SOAT1 blockade and these observed benefits remain …


A Mathematical Model Of Glut1 Modulation In Rods And Rpe And Its Differential Impact In Cell Metabolism, Andrea Aparicio, Erika T Camacho, Nancy J. Philp, Stephen A Wirkus Jun 2022

A Mathematical Model Of Glut1 Modulation In Rods And Rpe And Its Differential Impact In Cell Metabolism, Andrea Aparicio, Erika T Camacho, Nancy J. Philp, Stephen A Wirkus

Department of Pathology, Anatomy, and Cell Biology Faculty Papers

We present a mathematical model of key glucose metabolic pathways in two cells of the human retina: the rods and the retinal pigmented epithelium (RPE). Computational simulations of glucose transporter 1 (GLUT1) inhibition in the model accurately reproduce experimental data from conditional knockout mice and reveal that modification of GLUT1 expression levels of both cells differentially impacts their metabolism. We hypothesize that, under glucose scarcity, the RPE’s energy producing pathways are altered in order to preserve its functionality, impacting the photoreceptors’ outer segment renewal. On the other hand, when glucose is limited in the rods, aerobic glycolysis is preserved, which …


Uncontrolled Mitochondrial Calcium Uptake Underlies The Pathogenesis Of Neurodegeneration In Micu1-Deficient Mice And Patients, Raghavendra Singh, Adam Bartok, Melanie Paillard, Ashley L. Tyburski, Melanie B Elliott, György Hajnóczky Mar 2022

Uncontrolled Mitochondrial Calcium Uptake Underlies The Pathogenesis Of Neurodegeneration In Micu1-Deficient Mice And Patients, Raghavendra Singh, Adam Bartok, Melanie Paillard, Ashley L. Tyburski, Melanie B Elliott, György Hajnóczky

Department of Pathology, Anatomy, and Cell Biology Faculty Papers

Dysregulation of mitochondrial Ca2+ homeostasis has been linked to neurodegenerative diseases. Mitochondrial Ca2+ uptake is mediated via the calcium uniporter complex that is primarily regulated by MICU1, a Ca2+-sensing gatekeeper. Recently, human patients with MICU1 loss-of-function mutations were diagnosed with neuromuscular and cognitive impairments. While studies in patient-derived cells revealed altered mitochondrial calcium signaling, the neuronal pathogenesis was difficult to study. To fill this void, we created a neuron-specific MICU1-KO mouse model. These animals show progressive, abnormal motor and cognitive phenotypes likely caused by the degeneration of motor neurons in the spinal cord and the cortex. We found increased susceptibility …


Mintruls: Prediction Of Mirna-Mrna Target Site Interactions Using Regularized Least Square Method, Sushil Kumar Shakyawar, Siddesh Southekal, Chittibabu Guda Jan 2022

Mintruls: Prediction Of Mirna-Mrna Target Site Interactions Using Regularized Least Square Method, Sushil Kumar Shakyawar, Siddesh Southekal, Chittibabu Guda

Journal Articles: Genetics, Cell Biology & Anatomy

Identification of miRNA-mRNA interactions is critical to understand the new paradigms in gene regulation. Existing methods show suboptimal performance owing to inappropriate feature selection and limited integration of intuitive biological features of both miRNAs and mRNAs. The present regularized least square-based method, mintRULS, employs features of miRNAs and their target sites using pairwise similarity metrics based on free energy, sequence and repeat identities, and target site accessibility to predict miRNA-target site interactions. We hypothesized that miRNAs sharing similar structural and functional features are more likely to target the same mRNA, and conversely, mRNAs with similar features can be targeted by …


Uveitis-Mediated Immune Cell Invasion Through The Extracellular Matrix Of The Lens Capsule, Jodirae Dedreu, Sonali Pal-Ghosh, Mary J Mattapallil, Rachel R Caspi, Mary Ann Stepp, A Sue Menko Jan 2022

Uveitis-Mediated Immune Cell Invasion Through The Extracellular Matrix Of The Lens Capsule, Jodirae Dedreu, Sonali Pal-Ghosh, Mary J Mattapallil, Rachel R Caspi, Mary Ann Stepp, A Sue Menko

Department of Pathology, Anatomy, and Cell Biology Faculty Papers

While the eye is considered an immune privileged site, its privilege is abrogated when immune cells are recruited from the surrounding vasculature in response to trauma, infection, aging, and autoimmune diseases like uveitis. Here, we investigate whether in uveitis immune cells become associated with the lens capsule and compromise its privilege in studies of C57BL/6J mice with experimental autoimmune uveitis. These studies show that at D14, the peak of uveitis in these mice, T cells, macrophages, and Ly6G/Ly6C+ immune cells associate with the lens basement membrane capsule, burrow into the capsule matrix, and remain integrated with the capsule as immune …


Gonad: Genome-Editing Via Oviductal Nucleic Acids Delivery System: A Novel Microinjection Independent Genome Engineering Method In Mice., Gou Takahashi, Channabasavaiah B. Gurumurthy, Kenta Wada, Hiromi Miura, Masahiro Sato, Masato Ohtsuka Jun 2015

Gonad: Genome-Editing Via Oviductal Nucleic Acids Delivery System: A Novel Microinjection Independent Genome Engineering Method In Mice., Gou Takahashi, Channabasavaiah B. Gurumurthy, Kenta Wada, Hiromi Miura, Masahiro Sato, Masato Ohtsuka

Journal Articles: Genetics, Cell Biology & Anatomy

Microinjection is considered the gold standard technique for delivery of nucleic acids (NAs; transgenes or genome editing tools such as CRISPR/Cas9 systems) into embryos, for creating genetically modified organisms. It requires sophisticated equipment as well as well-trained and highly skilled personnel to perform the micro-injection technique. Here, we describe a novel and simple microinjection-independent technique, called Genome-editing via Oviductal Nucleic Acids Delivery (GONAD). Using GONAD, we show that NAs (e.g., eGFP mRNA or Cas9 mRNA/sgRNAs) can be effectively delivered to pre-implantation embryos within the intact mouse oviduct by a simple electroporation method, and result in the desired genetic modification in …


One-Step Generation Of Multiple Transgenic Mouse Lines Using An Improved Pronuclear Injection-Based Targeted Transgenesis (I-Pitt)., Masato Ohtsuka, Hiromi Miura, Keiji Mochida, Michiko Hirose, Ayumi Hasegawa, Atsuo Ogura, Ryuta Mizutani, Minoru Kimura, Ayako Isotani, Masahito Ikawa, Masahiro Sato, Channabasavaiah B. Gurumurthy Apr 2015

One-Step Generation Of Multiple Transgenic Mouse Lines Using An Improved Pronuclear Injection-Based Targeted Transgenesis (I-Pitt)., Masato Ohtsuka, Hiromi Miura, Keiji Mochida, Michiko Hirose, Ayumi Hasegawa, Atsuo Ogura, Ryuta Mizutani, Minoru Kimura, Ayako Isotani, Masahito Ikawa, Masahiro Sato, Channabasavaiah B. Gurumurthy

Journal Articles: Genetics, Cell Biology & Anatomy

BACKGROUND: The pronuclear injection (PI) is the simplest and widely used method to generate transgenic (Tg) mice. Unfortunately, PI-based Tg mice show uncertain transgene expression due to random transgene insertion in the genome, usually with multiple copies. Thus, typically at least three or more Tg lines are produced by injecting over 200 zygotes and the best line/s among them are selected through laborious screening steps. Recently, we developed technologies using Cre-loxP system that allow targeted insertion of single-copy transgene into a predetermined locus through PI. We termed the method as PI-based Targeted Transgenesis (PITT). A similar method using PhiC31-attP/B system …


Assessment Of Artificial Mirna Architectures For Higher Knockdown Efficiencies Without The Undesired Effects In Mice., Hiromi Miura, Hidetoshi Inoko, Masafumi Tanaka, Hirofumi Nakaoka, Minoru Kimura, Channabasavaiah B. Gurumurthy, Masahiro Sato, Masato Ohtsuka Jan 2015

Assessment Of Artificial Mirna Architectures For Higher Knockdown Efficiencies Without The Undesired Effects In Mice., Hiromi Miura, Hidetoshi Inoko, Masafumi Tanaka, Hirofumi Nakaoka, Minoru Kimura, Channabasavaiah B. Gurumurthy, Masahiro Sato, Masato Ohtsuka

Journal Articles: Genetics, Cell Biology & Anatomy

RNAi-based strategies have been used for hypomorphic analyses. However, there are technical challenges to achieve robust, reproducible knockdown effect. Here we examined the artificial microRNA (amiRNA) architectures that could provide higher knockdown efficiencies. Using transient and stable transfection assays in cells, we found that simple amiRNA-expression cassettes, that did not contain a marker gene (-MG), displayed higher amiRNA expression and more efficient knockdown than those that contained a marker gene (+MG). Further, we tested this phenomenon in vivo, by analyzing amiRNA-expressing mice that were produced by the pronuclear injection-based targeted transgenesis (PITT) method. While we observed significant silencing of the …


Mammalian Alteration/Deficiency In Activation 3 (Ada3) Is Essential For Embryonic Development And Cell Cycle Progression., Shakur Mohibi, Channabasavaiah B. Gurumurthy, Alo Nag, Jun Wang, Sameer Mirza, Yousaf Mian, Meghan Quinn, Bryan J. Katafiasz, James D. Eudy, Sanjit Pandey, Chittibabu Guda, Mayumi Naramura, Hamid Band, Vimla Band Aug 2012

Mammalian Alteration/Deficiency In Activation 3 (Ada3) Is Essential For Embryonic Development And Cell Cycle Progression., Shakur Mohibi, Channabasavaiah B. Gurumurthy, Alo Nag, Jun Wang, Sameer Mirza, Yousaf Mian, Meghan Quinn, Bryan J. Katafiasz, James D. Eudy, Sanjit Pandey, Chittibabu Guda, Mayumi Naramura, Hamid Band, Vimla Band

Journal Articles: Genetics, Cell Biology & Anatomy

Ada3 protein is an essential component of histone acetyl transferase containing coactivator complexes conserved from yeast to human. We show here that germline deletion of Ada3 in mouse is embryonic lethal, and adenovirus-Cre mediated conditional deletion of Ada3 in Ada3(FL/FL) mouse embryonic fibroblasts leads to a severe proliferation defect which was rescued by ectopic expression of human Ada3. A delay in G(1) to S phase of cell cycle was also seen that was due to accumulation of Cdk inhibitor p27 which was an indirect effect of c-myc gene transcription control by Ada3. We further showed that this defect could be …


Decorin-Mediated Inhibition Of Colorectal Cancer Growth And Migration Is Associated With E-Cadherin In Vitro And In Mice., Xiuli Bi, Nicole M Pohl, Zhibin Qian, George R Yang, Yuan Gou, Grace Guzman, Andre Kajdacsy-Balla, Renato V Iozzo, Wancai Yang Feb 2012

Decorin-Mediated Inhibition Of Colorectal Cancer Growth And Migration Is Associated With E-Cadherin In Vitro And In Mice., Xiuli Bi, Nicole M Pohl, Zhibin Qian, George R Yang, Yuan Gou, Grace Guzman, Andre Kajdacsy-Balla, Renato V Iozzo, Wancai Yang

Department of Pathology, Anatomy, and Cell Biology Faculty Papers

Previous studies have shown that decorin expression is significantly reduced in colorectal cancer tissues and cancer cells, and genetic deletion of the decorin gene is sufficient to cause intestinal tumor formation in mice, resulting from a downregulation of p21, p27(kip1) and E-cadherin and an upregulation of β-catenin signaling [Bi,X. et al. (2008) Genetic deficiency of decorin causes intestinal tumor formation through disruption of intestinal cell maturation. Carcinogenesis, 29, 1435-1440]. However, the regulation of E-cadherin by decorin and its implication in cancer formation and metastasis is largely unknown. Using a decorin knockout mouse model (Dcn(-/-) mice) and manipulated expression of decorin …


Decorin Protein Core Affects The Global Gene Expression Profile Of The Tumor Microenvironment In A Triple-Negative Orthotopic Breast Carcinoma Xenograft Model., Simone Buraschi, Thomas Neill, Rick T Owens, Leonardo A Iniguez, George Purkins, Rajanikanth Vadigepalli, Barry Evans, Liliana Schaefer, Stephen C Peiper, Zi-Xuan Wang, Renato V Iozzo Jan 2012

Decorin Protein Core Affects The Global Gene Expression Profile Of The Tumor Microenvironment In A Triple-Negative Orthotopic Breast Carcinoma Xenograft Model., Simone Buraschi, Thomas Neill, Rick T Owens, Leonardo A Iniguez, George Purkins, Rajanikanth Vadigepalli, Barry Evans, Liliana Schaefer, Stephen C Peiper, Zi-Xuan Wang, Renato V Iozzo

Department of Pathology, Anatomy, and Cell Biology Faculty Papers

Decorin, a member of the small leucine-rich proteoglycan gene family, exists and functions wholly within the tumor microenvironment to suppress tumorigenesis by directly targeting and antagonizing multiple receptor tyrosine kinases, such as the EGFR and Met. This leads to potent and sustained signal attenuation, growth arrest, and angiostasis. We thus sought to evaluate the tumoricidal benefits of systemic decorin on a triple-negative orthotopic breast carcinoma xenograft model. To this end, we employed a novel high-density mixed expression array capable of differentiating and simultaneously measuring gene signatures of both Mus musculus (stromal) and Homo sapiens (epithelial) tissue origins. We found that …


Tdp-43 Potentiates Alpha-Synuclein Toxicity To Dopaminergic Neurons In Transgenic Mice., Tian Tian, Cao Huang, Jianbin Tong, Ming Yang, Hongxia Zhou, Xugang Xia Jan 2011

Tdp-43 Potentiates Alpha-Synuclein Toxicity To Dopaminergic Neurons In Transgenic Mice., Tian Tian, Cao Huang, Jianbin Tong, Ming Yang, Hongxia Zhou, Xugang Xia

Department of Pathology, Anatomy, and Cell Biology Faculty Papers

TDP-43 and α-synuclein are two disease proteins involved in a wide range of neurodegenerative diseases. While TDP-43 proteinopathy is considered a pathologic hallmark of sporadic amyotrophic lateral sclerosis and frontotemporal lobe degeneration, α-synuclein is a major component of Lewy body characteristic of Parkinson's disease. Intriguingly, TDP-43 proteinopathy also coexists with Lewy body and with synucleinopathy in certain disease conditions. Here we reported the effects of TDP-43 on α-synuclein neurotoxicity in transgenic mice. Overexpression of mutant TDP-43 (M337V substitution) in mice caused early death in transgenic founders, but overexpression of normal TDP-43 only induced a moderate loss of cortical neurons in …


Sustained Expression Of Tdp-43 And Fus In Motor Neurons In Rodent's Lifetime., Cao Huang, Pedro Yuxing Xia, Hongxia Zhou Jan 2010

Sustained Expression Of Tdp-43 And Fus In Motor Neurons In Rodent's Lifetime., Cao Huang, Pedro Yuxing Xia, Hongxia Zhou

Department of Pathology, Anatomy, and Cell Biology Faculty Papers

TAR DNA-binding protein (TDP-43) and fused in sarcoma (FUS) are two highly conserved ribonucleoproteins. Pathogenic mutations of the TDP-43 or the FUS gene are all linked to amyotrophic lateral sclerosis (ALS) that is characterized by progressive degeneration of motor neurons. To better understand the correlation of ALS disease genes with the selectivity of chronic motor neuron degeneration, we examined the longitudinal expression of the TDP-43 and the FUS genes in C57BL6 mice and in Sprague-Dawley rats. TDP-43 and FUS were robustly and ubiquitously expressed in the postnatal mice and rats, but were markedly decreased in the adult rodents. In adulthood, …


Role Of Mammalian Ecdysoneless In Cell Cycle Regulation., Jun Hyun Kim, Channabasavaiah B. Gurumurthy, Mayumi Naramura, Ying Zhang, Andrew T. Dudley, Lynn Doglio, Hamid Band, Vimla Band Sep 2009

Role Of Mammalian Ecdysoneless In Cell Cycle Regulation., Jun Hyun Kim, Channabasavaiah B. Gurumurthy, Mayumi Naramura, Ying Zhang, Andrew T. Dudley, Lynn Doglio, Hamid Band, Vimla Band

Journal Articles: Genetics, Cell Biology & Anatomy

The Ecdysoneless (Ecd) protein is required for cell-autonomous roles in development and oogenesis in Drosophila, but the function of its evolutionarily conserved mammalian orthologs is not clear. To study the cellular function of Ecd in mammalian cells, we generated Ecd(lox/lox) mouse embryonic fibroblast cells from Ecd floxed mouse embryos. Cre-mediated deletion of Ecd in Ecd(lox/lox) mouse embryonic fibroblasts led to a proliferative block due to a delay in G(1)-S cell cycle progression; this defect was reversed by the introduction of human Ecd. Loss of Ecd led to marked down-regulation of E2F target gene expression. Furthermore, Ecd directly bound to Rb …


Selective Role For Superoxide In Insp3 Receptor-Mediated Mitochondrial Dysfunction And Endothelial Apoptosis., Muniswamy Madesh, Brian J Hawkins, Tatyana Milovanova, Cunnigaiper D Bhanumathy, Suresh K Joseph, Satish P Ramachandrarao, Kumar Sharma, Tomohiro Kurosaki, Aron B Fisher Sep 2005

Selective Role For Superoxide In Insp3 Receptor-Mediated Mitochondrial Dysfunction And Endothelial Apoptosis., Muniswamy Madesh, Brian J Hawkins, Tatyana Milovanova, Cunnigaiper D Bhanumathy, Suresh K Joseph, Satish P Ramachandrarao, Kumar Sharma, Tomohiro Kurosaki, Aron B Fisher

Department of Pathology, Anatomy, and Cell Biology Faculty Papers

Reactive oxygen species (ROS) play a divergent role in both cell survival and cell death during ischemia/reperfusion (I/R) injury and associated inflammation. In this study, ROS generation by activated macrophages evoked an intracellular Ca2+ ([Ca2+]i) transient in endothelial cells that was ablated by a combination of superoxide dismutase and an anion channel blocker. [Ca2+]i store depletion, but not extracellular Ca2+ chelation, prevented [Ca2+]i elevation in response to O2*- that was inositol 1,4,5-trisphosphate (InsP3) dependent, and cells lacking the three InsP3 receptor (InsP3R) isoforms failed to display the [Ca2+]i transient. Importantly, the O2*--triggered Ca2+ mobilization preceded a loss in mitochondrial membrane …


Functionally Active T1-T1 Interfaces Revealed By The Accessibility Of Intracellular Thiolate Groups In Kv4 Channels., Guangyu Wang, Mohammad Shahidullah, Carmen A Rocha, Candace Strang, Paul J Pfaffinger, Manuel Covarrubias Jul 2005

Functionally Active T1-T1 Interfaces Revealed By The Accessibility Of Intracellular Thiolate Groups In Kv4 Channels., Guangyu Wang, Mohammad Shahidullah, Carmen A Rocha, Candace Strang, Paul J Pfaffinger, Manuel Covarrubias

Department of Pathology, Anatomy, and Cell Biology Faculty Papers

Gating of voltage-dependent K(+) channels involves movements of membrane-spanning regions that control the opening of the pore. Much less is known, however, about the contributions of large intracellular channel domains to the conformational changes that underlie gating. Here, we investigated the functional role of intracellular regions in Kv4 channels by probing relevant cysteines with thiol-specific reagents. We find that reagent application to the intracellular side of inside-out patches results in time-dependent irreversible inhibition of Kv4.1 and Kv4.3 currents. In the absence or presence of Kv4-specific auxiliary subunits, mutational and electrophysiological analyses showed that none of the 14 intracellular cysteines is …


Stretch-Induced Calcium Release In Smooth Muscle., Guangju Ji, Robert J Barsotti, Morris E Feldman, Michael I Kotlikoff Jun 2002

Stretch-Induced Calcium Release In Smooth Muscle., Guangju Ji, Robert J Barsotti, Morris E Feldman, Michael I Kotlikoff

Department of Pathology, Anatomy, and Cell Biology Faculty Papers

Smooth muscle cells undergo substantial increases in length, passively stretching during increases in intraluminal pressure in vessels and hollow organs. Active contractile responses to counteract increased transmural pressure were first described almost a century ago (Bayliss, 1902) and several mechanisms have been advanced to explain this phenomenon. We report here that elongation of smooth muscle cells results in ryanodine receptor-mediated Ca(2+) release in individual myocytes. Mechanical elongation of isolated, single urinary bladder myocytes to approximately 120% of slack length (DeltaL = 20) evoked Ca(2+) release from intracellular stores in the form of single Ca(2+) sparks and propagated Ca(2+) waves. Ca(2+) …


Interaction Between Fgf And Bmp Signaling Pathways Regulates Development Of Metanephric Mesenchyme., Andrew T. Dudley, R. E. Godin, E. J. Robertson Jun 1999

Interaction Between Fgf And Bmp Signaling Pathways Regulates Development Of Metanephric Mesenchyme., Andrew T. Dudley, R. E. Godin, E. J. Robertson

Journal Articles: Genetics, Cell Biology & Anatomy

Nephrogenesis in the mouse kidney begins at embryonic day 11 and ends approximately 10 days postpartum. During this period, new nephrons are continually being generated from a stem-cell population-the nephrogenic mesenchyme-in response to signals emanating from the tips of the branching ureter. Relatively little is known about the mechanism by which the nephrogenic mesenchyme cell population is maintained at the tips of the ureter in the presence of signals promoting tubulogenesis. Previous studies have shown that a loss of Bmp7 function leads to kidney defects that are a likely result of progressive loss of nephrogenic mesenchyme by apoptosis. The studies …


Transgenic Mice Which Overexpress Neurotrophin-3 (Nt-3) And Method Of Use, Kathryn M. Albers, Brian M. Davis Jan 1999

Transgenic Mice Which Overexpress Neurotrophin-3 (Nt-3) And Method Of Use, Kathryn M. Albers, Brian M. Davis

Neuroscience Faculty Patents

Transgenic mice express increased levels of neurotrophin-3 (NT-3) in epithelium when their ancestors are microinjected with the NT-3 gene. The NT-3 growth factor expressing transgenic mice are useful in the study of neurodegenerative disorders of the brain such as Parkinson's syndrome and Alzheimer's disease, of the spinal cord motor neurons such as amyotrophic lateral sclerosis, and for testing drug candidates for the treatment of these diseases.


Transgenic Mice Which Overexpress Nerve Growth Factor, Kathryn M. Albers, Brian M. Davis Feb 1997

Transgenic Mice Which Overexpress Nerve Growth Factor, Kathryn M. Albers, Brian M. Davis

Neuroscience Faculty Patents

Transgenic mice that express increased levels of nerve growth factor (NGF) in the epidermis and other stratified, keratinized epithelium. The nerve growth factor expressing transgenic mice are useful in the study of neurodegenerative disorders of the brain such as Parkinson's syndrome and Alzheimer's disease and for testing for drug candidates for the treatment of these diseases.


A Requirement For Bone Morphogenetic Protein-7 During Development Of The Mammalian Kidney And Eye., Andrew T. Dudley, K. M. Lyons, E. J. Robertson Nov 1995

A Requirement For Bone Morphogenetic Protein-7 During Development Of The Mammalian Kidney And Eye., Andrew T. Dudley, K. M. Lyons, E. J. Robertson

Journal Articles: Genetics, Cell Biology & Anatomy

BMP-7/OP-1, a member of the transforming growth factor-beta (TGF-beta) family of secreted growth factors, is expressed during mouse embryogenesis in a pattern suggesting potential roles in a variety of inductive tissue interactions. The present study demonstrates that mice lacking BMP-7 display severe defects confined to the developing kidney and eye. Surprisingly, the early inductive tissue interactions responsible for establishing both organs appear largely unaffected. However, the absence of BMP-7 disrupts the subsequent cellular interactions required for their continued growth and development. Consequently, homozygous mutant animals exhibit renal dysplasia and anophthalmia at birth. Overall, these findings identify BMP-7 as an essential …