Open Access. Powered by Scholars. Published by Universities.®

Medical Anatomy Commons

Open Access. Powered by Scholars. Published by Universities.®

PDF

Pathology

Decorin

Publication Year

Articles 1 - 2 of 2

Full-Text Articles in Medical Anatomy

Catabolic Degradation Of Endothelial Vegfa Via Autophagy, Thomas Neill, Carolyn Chen, Simone Buraschi, Renato V. Iozzo May 2020

Catabolic Degradation Of Endothelial Vegfa Via Autophagy, Thomas Neill, Carolyn Chen, Simone Buraschi, Renato V. Iozzo

Department of Pathology, Anatomy, and Cell Biology Faculty Papers

Extracellular matrix-evoked angiostasis and autophagy within the tumor microenvironment represent two critical, but unconnected, functions of the small leucine-rich proteoglycan, decorin. Acting as a partial agonist of vascular endothelial growth factor 2 (VEGFR2), soluble decorin signals via the energy sensing protein, AMP-activated protein kinase (AMPK), in the autophagic degradation of intracellular vascular endothelial growth factor A (VEGFA). Here, we discovered that soluble decorin evokes intracellular catabolism of endothelial VEGFA that is mechanistically independent of mTOR, but requires an autophagic regulator, paternally expressed gene 3 (PEG3). We found that administration of autophagic inhibitors such as chloroquine or bafilomycin A1, or depletion …


Decorin-Mediated Inhibition Of Colorectal Cancer Growth And Migration Is Associated With E-Cadherin In Vitro And In Mice., Xiuli Bi, Nicole M Pohl, Zhibin Qian, George R Yang, Yuan Gou, Grace Guzman, Andre Kajdacsy-Balla, Renato V Iozzo, Wancai Yang Feb 2012

Decorin-Mediated Inhibition Of Colorectal Cancer Growth And Migration Is Associated With E-Cadherin In Vitro And In Mice., Xiuli Bi, Nicole M Pohl, Zhibin Qian, George R Yang, Yuan Gou, Grace Guzman, Andre Kajdacsy-Balla, Renato V Iozzo, Wancai Yang

Department of Pathology, Anatomy, and Cell Biology Faculty Papers

Previous studies have shown that decorin expression is significantly reduced in colorectal cancer tissues and cancer cells, and genetic deletion of the decorin gene is sufficient to cause intestinal tumor formation in mice, resulting from a downregulation of p21, p27(kip1) and E-cadherin and an upregulation of β-catenin signaling [Bi,X. et al. (2008) Genetic deficiency of decorin causes intestinal tumor formation through disruption of intestinal cell maturation. Carcinogenesis, 29, 1435-1440]. However, the regulation of E-cadherin by decorin and its implication in cancer formation and metastasis is largely unknown. Using a decorin knockout mouse model (Dcn(-/-) mice) and manipulated expression of decorin …