Open Access. Powered by Scholars. Published by Universities.®

Skin and Connective Tissue Diseases Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Skin and Connective Tissue Diseases

A Small Peptide Increases Drug Delivery In Human Melanoma Cells, Shirley Tong, Shaban Darwish, Hanieh Hossein Nejad Ariani, Kate Alison Lozada, David Salehi, Maris A. Cinelli, Richard B. Silverman, Kamaljit Kaur, Sun Yang May 2022

A Small Peptide Increases Drug Delivery In Human Melanoma Cells, Shirley Tong, Shaban Darwish, Hanieh Hossein Nejad Ariani, Kate Alison Lozada, David Salehi, Maris A. Cinelli, Richard B. Silverman, Kamaljit Kaur, Sun Yang

Pharmacy Faculty Articles and Research

Melanoma is the most fatal type of skin cancer and is notoriously resistant to chemotherapies. The response of melanoma to current treatments is difficult to predict. To combat these challenges, in this study, we utilize a small peptide to increase drug delivery to melanoma cells. A peptide library array was designed and screened using a peptide array-whole cell binding assay, which identified KK-11 as a novel human melanoma-targeting peptide. The peptide and its D-amino acid substituted analogue (VPWxEPAYQrFL or D-aa KK-11) were synthesized via a solid-phase strategy. Further studies using FITC-labeled KK-11 demonstrated dose-dependent uptake in human melanoma cells. D-aa …


Targeting Neuronal Nitric Oxide Synthase (Nnos) For Melanoma Treatment, Shirley Tong May 2022

Targeting Neuronal Nitric Oxide Synthase (Nnos) For Melanoma Treatment, Shirley Tong

Pharmaceutical Sciences (PhD) Dissertations

Human cutaneous melanoma is the most aggressive form of skin cancer and the incidence rates have continued to increase over the years. Neuronal nitric oxide synthase (nNOS) produces nitric oxide (NO) has been found to be overexpressed in human melanoma and the expression of nNOS is induced by interferon-gamma (IFN-γ). In our studies, nNOS has been implicated in IFN-γ-stimulated melanoma progression and the inhibition of nNOS using novel inhibitors effectively inhibited IFN-γ-stimulated tumor growth in a xenograft mouse model. Programmed death-ligand 1 (PD-L1) is overexpressed in melanoma and plays an important role in suppressing the immune system 12-14. Our …