Open Access. Powered by Scholars. Published by Universities.®

Bacterial Infections and Mycoses Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Bacterial Infections and Mycoses

Human Alcohol-Microbiota Mice Have Increased Susceptibility To Bacterial Pneumonia, Kelly C. Cunningham, Deandra R. Smith, Daniel N. Villageliú, Christi M. Ellis, Amanda E. Ramer-Tait, Jeffrey D. Price, Todd A. Wyatt, Daren L. Knoell, Mystera M. Samuelson, Patricia E. Molina, David A. Welsh, Derrick R. Samuelson Sep 2023

Human Alcohol-Microbiota Mice Have Increased Susceptibility To Bacterial Pneumonia, Kelly C. Cunningham, Deandra R. Smith, Daniel N. Villageliú, Christi M. Ellis, Amanda E. Ramer-Tait, Jeffrey D. Price, Todd A. Wyatt, Daren L. Knoell, Mystera M. Samuelson, Patricia E. Molina, David A. Welsh, Derrick R. Samuelson

School of Medicine Faculty Publications

Preclinical studies have shown that chronic alcohol abuse leads to alterations in the gastrointestinal microbiota that are associated with behavior changes, physiological alterations, and immunological effects. However, such studies have been limited in their ability to evaluate the direct effects of alcohol-associated dysbiosis. To address this, we developed a humanized alcohol-microbiota mouse model to systematically evaluate the immunological effects of chronic alcohol abuse mediated by intestinal dysbiosis. Germ-free mice were colonized with human fecal microbiota from individuals with high and low Alcohol Use Disorders Identification Test (AUDIT) scores and bred to produce human alcohol-associated microbiota or human control-microbiota F1 progenies. …


Chain-Selective Isotopic Labeling Of The Heterodimeric Type Iii Secretion Chaperone, Scc4:Scc1, Reveals The Total Structural Rearrangement Of The Chlamydia Trachomatis Bi-Functional Protein, Scc4, Thilini O. Ukwaththage, Samantha M. Keane, Li Shen, Megan A. Macnaughtan Oct 2020

Chain-Selective Isotopic Labeling Of The Heterodimeric Type Iii Secretion Chaperone, Scc4:Scc1, Reveals The Total Structural Rearrangement Of The Chlamydia Trachomatis Bi-Functional Protein, Scc4, Thilini O. Ukwaththage, Samantha M. Keane, Li Shen, Megan A. Macnaughtan

School of Medicine Faculty Publications

Scc4 is an unusual bi-functional protein from Chlamydia trachomatis (CT) that functions as a type III secretion system (T3SS) chaperone and an RNA polymerase (RNAP)-binding protein. Both functions require interactions with protein partners during specific stages of the CT developmental cycle. As a T3SS chaperone, Scc4 binds Scc1 during the late stage of development to form a heterodimer complex, which chaperones the essential virulence effector, CopN. During the early-middle stage of development, Scc4 regulates T3SS gene expression by binding the σ66-containing RNAP holoenzyme. In order to study the structure and association mechanism of the Scc4:Scc1 T3SS chaperone complex using nuclear …