Open Access. Powered by Scholars. Published by Universities.®

Bacterial Infections and Mycoses Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Bacterial Infections and Mycoses

Microbial Co-Infection Alters Macrophage Polarization, Phagosomal Escape, And Microbial Killing, Nikita H. Trivedi, Jieh-Juen Yu, Chiung-Yu Hung, Richard P. Doelger, Christopher S. Navara, Lisa Y. Armitige, Janakiram Seshu, Anthony P. Sinai, James P. Chambers, M. Neal Guentzel, Bernard P. Arulanandam Apr 2018

Microbial Co-Infection Alters Macrophage Polarization, Phagosomal Escape, And Microbial Killing, Nikita H. Trivedi, Jieh-Juen Yu, Chiung-Yu Hung, Richard P. Doelger, Christopher S. Navara, Lisa Y. Armitige, Janakiram Seshu, Anthony P. Sinai, James P. Chambers, M. Neal Guentzel, Bernard P. Arulanandam

Microbiology, Immunology, and Molecular Genetics Faculty Publications

Macrophages are important innate immune cells that respond to microbial insults. In response to multi-bacterial infection, the macrophage activation state may change upon exposure to nascent mediators, which results in different bacterial killing mechanism(s). In this study, we utilized two respiratory bacterial pathogens, Mycobacterium bovis (Bacillus Calmette Guẻrin, BCG) and Francisella tularensis live vaccine strain (LVS) with different phagocyte evasion mechanisms, as model microbes to assess the influence of initial bacterial infection on the macrophage response to secondary infection. Non-activated (M0) macrophages or activated M2-polarized cells (J774 cells transfected with the mouse IL-4 gene) were first infected with BCG for …


The Feoabc Locus Of Yersinia Pestis Likely Has Two Promoters Causing Unique Iron Regulation, Lauren O'Connor, Jacqueline D. Fetherston, Robert D. Perry Jul 2017

The Feoabc Locus Of Yersinia Pestis Likely Has Two Promoters Causing Unique Iron Regulation, Lauren O'Connor, Jacqueline D. Fetherston, Robert D. Perry

Microbiology, Immunology, and Molecular Genetics Faculty Publications

The FeoABC ferrous transporter is a wide-spread bacterial system. While the feoABC locus is regulated by a number of factors in the bacteria studied, we have previously found that regulation of feoABC in Yersinia pestis appears to be unique. None of the non-iron responsive transcriptional regulators that control expression of feoABC in other bacteria do so in Y. pestis. Another unique factor is the iron and Fur regulation of the Y. pestis feoABC locus occurs during microaerobic but not aerobic growth. Here we show that this unique iron-regulation is not due to a unique aspect of the Y. pestis …