Open Access. Powered by Scholars. Published by Universities.®

Bacterial Infections and Mycoses Commons

Open Access. Powered by Scholars. Published by Universities.®

Nanotechnology

Pharmacy Faculty Articles and Research

Series

Drug delivery

Publication Year

Articles 1 - 2 of 2

Full-Text Articles in Bacterial Infections and Mycoses

Calcium Phosphate As A Key Material For Socially Responsible Tissue Engineering, Vuk Uskoković, Victoria M. Wu Jun 2016

Calcium Phosphate As A Key Material For Socially Responsible Tissue Engineering, Vuk Uskoković, Victoria M. Wu

Pharmacy Faculty Articles and Research

Socially responsible technologies are designed while taking into consideration the socioeconomic, geopolitical and environmental limitations of regions in which they will be implemented. In the medical context, this involves making therapeutic platforms more accessible and affordable to patients in poor regions of the world wherein a given disease is endemic. This often necessitates going against the reigning trend of making therapeutic nanoparticles ever more structurally complex and expensive. However, studies aimed at simplifying materials and formulations while maintaining the functionality and therapeutic response of their more complex counterparts seldom provoke a significant interest in the scientific community. In this review …


Phase Composition Control Of Calcium Phosphate Nanoparticles For Tunable Drug Delivery Kinetics And Treatment Of Osteomyelitis. Part 2: Antibacterial And Osteoblastic Response, Vuk Uskoković, Tejal A. Dasai Jan 2013

Phase Composition Control Of Calcium Phosphate Nanoparticles For Tunable Drug Delivery Kinetics And Treatment Of Osteomyelitis. Part 2: Antibacterial And Osteoblastic Response, Vuk Uskoković, Tejal A. Dasai

Pharmacy Faculty Articles and Research

Osteomyelitis has been traditionally treated by the combination of long-term antibiotic therapies and surgical removal of diseased tissue. The multifunctional material was developed in this study with the aim to improve this therapeutic approach by: (a) enabling locally delivered and sustained release of antibiotics at a tunable rate, so as to eliminate the need for repetitive administration of systemically distributed antibiotics; and (b) controllably dissolving itself, so as to promote natural remineralization of the portion of bone lost to disease. We report hereby on the effect of the previously synthesized calcium phosphates (CAPs) with tunable solubilities and drug release time …