Open Access. Powered by Scholars. Published by Universities.®

Bacterial Infections and Mycoses Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 11 of 11

Full-Text Articles in Bacterial Infections and Mycoses

Chain-Selective Isotopic Labeling Of The Heterodimeric Type Iii Secretion Chaperone, Scc4:Scc1, Reveals The Total Structural Rearrangement Of The Chlamydia Trachomatis Bi-Functional Protein, Scc4, Thilini O. Ukwaththage, Samantha M. Keane, Li Shen, Megan A. Macnaughtan Oct 2020

Chain-Selective Isotopic Labeling Of The Heterodimeric Type Iii Secretion Chaperone, Scc4:Scc1, Reveals The Total Structural Rearrangement Of The Chlamydia Trachomatis Bi-Functional Protein, Scc4, Thilini O. Ukwaththage, Samantha M. Keane, Li Shen, Megan A. Macnaughtan

School of Medicine Faculty Publications

Scc4 is an unusual bi-functional protein from Chlamydia trachomatis (CT) that functions as a type III secretion system (T3SS) chaperone and an RNA polymerase (RNAP)-binding protein. Both functions require interactions with protein partners during specific stages of the CT developmental cycle. As a T3SS chaperone, Scc4 binds Scc1 during the late stage of development to form a heterodimer complex, which chaperones the essential virulence effector, CopN. During the early-middle stage of development, Scc4 regulates T3SS gene expression by binding the σ66-containing RNAP holoenzyme. In order to study the structure and association mechanism of the Scc4:Scc1 T3SS chaperone complex using nuclear …


Microbial Co-Infection Alters Macrophage Polarization, Phagosomal Escape, And Microbial Killing, Nikita H. Trivedi, Jieh-Juen Yu, Chiung-Yu Hung, Richard P. Doelger, Christopher S. Navara, Lisa Y. Armitige, Janakiram Seshu, Anthony P. Sinai, James P. Chambers, M. Neal Guentzel, Bernard P. Arulanandam Apr 2018

Microbial Co-Infection Alters Macrophage Polarization, Phagosomal Escape, And Microbial Killing, Nikita H. Trivedi, Jieh-Juen Yu, Chiung-Yu Hung, Richard P. Doelger, Christopher S. Navara, Lisa Y. Armitige, Janakiram Seshu, Anthony P. Sinai, James P. Chambers, M. Neal Guentzel, Bernard P. Arulanandam

Microbiology, Immunology, and Molecular Genetics Faculty Publications

Macrophages are important innate immune cells that respond to microbial insults. In response to multi-bacterial infection, the macrophage activation state may change upon exposure to nascent mediators, which results in different bacterial killing mechanism(s). In this study, we utilized two respiratory bacterial pathogens, Mycobacterium bovis (Bacillus Calmette Guẻrin, BCG) and Francisella tularensis live vaccine strain (LVS) with different phagocyte evasion mechanisms, as model microbes to assess the influence of initial bacterial infection on the macrophage response to secondary infection. Non-activated (M0) macrophages or activated M2-polarized cells (J774 cells transfected with the mouse IL-4 gene) were first infected with BCG for …


The Feoabc Locus Of Yersinia Pestis Likely Has Two Promoters Causing Unique Iron Regulation, Lauren O'Connor, Jacqueline D. Fetherston, Robert D. Perry Jul 2017

The Feoabc Locus Of Yersinia Pestis Likely Has Two Promoters Causing Unique Iron Regulation, Lauren O'Connor, Jacqueline D. Fetherston, Robert D. Perry

Microbiology, Immunology, and Molecular Genetics Faculty Publications

The FeoABC ferrous transporter is a wide-spread bacterial system. While the feoABC locus is regulated by a number of factors in the bacteria studied, we have previously found that regulation of feoABC in Yersinia pestis appears to be unique. None of the non-iron responsive transcriptional regulators that control expression of feoABC in other bacteria do so in Y. pestis. Another unique factor is the iron and Fur regulation of the Y. pestis feoABC locus occurs during microaerobic but not aerobic growth. Here we show that this unique iron-regulation is not due to a unique aspect of the Y. pestis …


Lymphoid Hematopoiesis And The Role Of B-Cells In Transgenic Mouse Model Of Sickle Cell Disease, Christina Cotte May 2017

Lymphoid Hematopoiesis And The Role Of B-Cells In Transgenic Mouse Model Of Sickle Cell Disease, Christina Cotte

University Scholar Projects

Sickle cell disease (SCD) has been shown to be associated with decreased baseline immunity and thus increased susceptibility to infection. I sought to discern possible causes of this by looking into the correlations between SCD and hematopoiesis, the immune system and the neuroendocrine system, and ultimately by conducting experiments surrounding the impaired immune system of SCD. These experiments focused on the potential causes and effects of the diminution of B-1a cells in the SCD spleen. Adoptive transfers, infections with Streptococcus pneumoniae, and histologic imaging were conducted to establish if the diminution of the B-1a cells in the SCD spleen …


Aspergillus Fumigatus Trehalose-Regulatory Subunit Homolog Moonlights To Mediate Cell Wall Homeostasis Through Modulation Of Chitin Synthase Activity, Arsa Thammahong, Alayna K. Caffrey-Card, Sourabh Dhingra, Joshua J. Obar, Robert Cramer Apr 2017

Aspergillus Fumigatus Trehalose-Regulatory Subunit Homolog Moonlights To Mediate Cell Wall Homeostasis Through Modulation Of Chitin Synthase Activity, Arsa Thammahong, Alayna K. Caffrey-Card, Sourabh Dhingra, Joshua J. Obar, Robert Cramer

Dartmouth Scholarship

Trehalose biosynthesis is found in fungi but not humans. Proteins involved in trehalose biosynthesis are essential for fungal pathogen virulence in humans and plants through multiple mechanisms. Loss of canonical trehalose biosynthesis genes in the human pathogen Aspergillus fumigatus significantly alters cell wall structure and integrity, though the mechanistic link between these virulence-associated pathways remains enigmatic. Here we characterize genes, called tslAand tslB, which encode proteins that contain domains similar to those corresponding to trehalose-6-phosphate phosphatase but lack critical catalytic residues for phosphatase activity. Loss of tslA reduces trehalose content in both conidia and mycelia, impairs cell wall …


Filamentous Fungal Carbon Catabolite Repression Supports Metabolic Plasticity And Stress Responses Essential For Disease Progression, Sarah R. Beattie, Kenneth Mark, Arsa Thammahong, Laure Nicolas Annick Ries, Sourabh Dhingra, Alayna Caffrey-Carr, Chao Cheng Apr 2017

Filamentous Fungal Carbon Catabolite Repression Supports Metabolic Plasticity And Stress Responses Essential For Disease Progression, Sarah R. Beattie, Kenneth Mark, Arsa Thammahong, Laure Nicolas Annick Ries, Sourabh Dhingra, Alayna Caffrey-Carr, Chao Cheng

Dartmouth Scholarship

Aspergillus fumigatus is responsible for a disproportionate number of invasive mycosis cases relative to other common filamentous fungi. While many fungal factors critical for infection establishment are known, genes essential for disease persistence and progression are ill defined. We propose that fungal factors that promote navigation of the rapidly changing nutrient and structural landscape characteristic of disease progression represent untapped clinically relevant therapeutic targets. To this end, we find that A. fumigatus requires a carbon catabolite repression (CCR) mediated genetic network to support in vivo fungal fitness and disease progression. While CCR as mediated by the transcriptional repressor CreA is …


Chip-Seq And In Vivo Transcriptome Analyses Of The Aspergillus Fumigatus Srebp Srba Reveals A New Regulator Of The Fungal Hypoxia Response And Virulence, Dawoon Chung, Bridget M. Barker, Charles C. Carey, Brittney Merriman Nov 2014

Chip-Seq And In Vivo Transcriptome Analyses Of The Aspergillus Fumigatus Srebp Srba Reveals A New Regulator Of The Fungal Hypoxia Response And Virulence, Dawoon Chung, Bridget M. Barker, Charles C. Carey, Brittney Merriman

Dartmouth Scholarship

The Aspergillus fumigatus sterol regulatory element binding protein (SREBP) SrbA belongs to the basic Helix-Loop-Helix (bHLH) family of transcription factors and is crucial for antifungal drug resistance and virulence. The latter phenotype is especially striking, as loss of SrbA results in complete loss of virulence in murine models of invasive pulmonary aspergillosis (IPA). How fungal SREBPs mediate fungal virulence is unknown, though it has been suggested that lack of growth in hypoxic conditions accounts for the attenuated virulence. To further understand the role of SrbA in fungal infection site pathobiology, chromatin immunoprecipitation followed by massively parallel DNA sequencing (ChIP-seq) was …


Effect Of Age And Vaccination On Extent And Spread Of Chlamydia Pneumoniae Infection In C57bl/6 Mice, Taylor Eddens, Sarah Beaudoin, Amanda Steinberger, Christopher Scott Little, Dawn Shell, Benjamin Wizel, Brian J. Balin Phd, Kerin L. Fresa-Dillon May 2012

Effect Of Age And Vaccination On Extent And Spread Of Chlamydia Pneumoniae Infection In C57bl/6 Mice, Taylor Eddens, Sarah Beaudoin, Amanda Steinberger, Christopher Scott Little, Dawn Shell, Benjamin Wizel, Brian J. Balin Phd, Kerin L. Fresa-Dillon

PCOM Scholarly Papers

BACKGROUND: Chlamydia pneumoniae is an obligate intracellular respiratory pathogen for humans. Infection by C. pneumoniae may be linked etiologically to extra-respiratory diseases of aging, especially atherosclerosis. We have previously shown that age promotes C. pneumoniae respiratory infection and extra-respiratory spread in BALB/c mice.

FINDINGS: Aged C57BL/6 mice had a greater propensity to develop chronic and/or progressive respiratory infections following experimental intranasal infection by Chlamydia pneumoniae when compared to young counterparts. A heptavalent CTL epitope minigene (CpnCTL7) vaccine conferred equal protection in the lungs of both aged and young mice. This vaccine was partially effective in protecting against C. …


Tca Cycle Inactivation In Staphylococcus Aureus Alters Nitric Oxide Production In Raw 264.7 Cells, Chandirasegaran Massilamany, Arunakumar Gangaplara, Donald J. Gardner, James M. Musser, David J. Steffen, Greg A. Somerville, Jay Reddy Jan 2011

Tca Cycle Inactivation In Staphylococcus Aureus Alters Nitric Oxide Production In Raw 264.7 Cells, Chandirasegaran Massilamany, Arunakumar Gangaplara, Donald J. Gardner, James M. Musser, David J. Steffen, Greg A. Somerville, Jay Reddy

Jay Reddy Publications

Inactivation of the Staphylococcus aureus tricarboxylic acid (TCA) cycle delays the resolution of cutaneous ulcers in a mouse soft tissue infection model. In this study, it was observed that cutaneous lesions in mice infected with wild-type or isogenic aconitase mutant S. aureus strains contained comparable inflammatory infiltrates, suggesting the delayed resolution was independent of the recruitment of immune cells. These observations led us to hypothesize that staphylococcal metabolism can modulate the host immune response. Using an in vitro model system involving RAW 264.7 cells, the authors observed that cells cultured with S. aureus aconitase mutant strains produced significantly lower amounts …


Cryptococcus Neoformans Serotype Groups Found In Clinical And Environmental Isolates, John Clauson May 1993

Cryptococcus Neoformans Serotype Groups Found In Clinical And Environmental Isolates, John Clauson

Masters Theses & Specialist Projects

Cryptococcus neoformans is an encapsulated yeast responsible for severe meningoencephalitis. The importance of epidemiological studies on cryptococcosis has increased since the beginning of the AIDS epidemic. C. neoformans exists in two varieties containing four serotypes, C. neoformans var. neoformans (serotypes A and D) and C. neoformans var. gattii (serotypes B and C). Locally C. neoformans var. neoformans has been associated with pigeon feces during those months having an average temperature of 64.2°F j(17.8°C) and above. Clinical and environmental isolates of C. neoformans obtained from regional hospitals and environmental samplings, respectively, have been grouped into their variety status utilizing canavanine-glycine-bromthymol blue …


Lethatlity Of And Elicitation Of Protective Antibody By Vibrio Parahaemolyticus Attc 17803, Richard Carlucci May 1975

Lethatlity Of And Elicitation Of Protective Antibody By Vibrio Parahaemolyticus Attc 17803, Richard Carlucci

Masters Theses & Specialist Projects

The LD50 of Vibrio parahaemolyticus ATCC 17803 for 13- to 18-g male mice, strain ICR, as determined by the 50% endpoint method, was found to be an estimated 7 x 107 CFU, when administered intraperitoneally in 0.5 ml of 24-h broth culture, O. D. 0.5 at 650 nm, diluted to 10-0.72.

The elicitation of protective antibody by this bacterium in male New Zealand White rabbits was demonstrated by testing control, baseline, and hyperimmune rabbit sera for their protective effect against 2 LD50 of the bacterium administered intraperitoneally in 13- to 18-g male mice, strain ICR. …