Open Access. Powered by Scholars. Published by Universities.®

Pharmaceutical Preparations Commons

Open Access. Powered by Scholars. Published by Universities.®

Nervous System Diseases

Cerebral microhemorrhage

Publication Year

Articles 1 - 4 of 4

Full-Text Articles in Pharmaceutical Preparations

Effects Of Dabigatran In Mouse Models Of Aging And Cerebral Amyloid Angiopathy, Neethu Michael, Mher Mahoney Grigoryan, Kelley Kilday, Rachita K. Sumbria, Vitaly Vasilevko, Joanne Van Ryn, David H. Cribbs, Annlia Paganini-Hill, Mark J. Fisher Sep 2019

Effects Of Dabigatran In Mouse Models Of Aging And Cerebral Amyloid Angiopathy, Neethu Michael, Mher Mahoney Grigoryan, Kelley Kilday, Rachita K. Sumbria, Vitaly Vasilevko, Joanne Van Ryn, David H. Cribbs, Annlia Paganini-Hill, Mark J. Fisher

Pharmacy Faculty Articles and Research

Oral anticoagulants are a critical component of stroke prevention, but carry a risk of brain hemorrhage. These hemorrhagic complications tend to occur in elderly individuals, especially those with predisposing conditions such as cerebral amyloid angiopathy (CAA). Clinical evidence suggests that non-vitamin K antagonist oral anticoagulants are safer than traditional oral anticoagulants. We analyzed whether the anticoagulant dabigatran produces cerebral microhemorrhage (the pathological substrate of MRI-demonstrable cerebral microbleeds) or intracerebral hemorrhage in aged mice with and without hemorrhage-predisposing angiopathy. We studied aged (22 months old) Tg2576 (a model of CAA) and wild-type (WT) littermate mice. Mice received either dabigatran etexilate (DE) …


Aging Exacerbates Development Of Cerebral Microbleeds In A Mouse Model, Rachita K. Sumbria, Mher Mahoney Grigoryan, Vitaly Vasilevko, Annlia Paganini-Hill, Kelley Kilday, Ronald Kim, David H. Cribbs, Mark J. Fisher Mar 2018

Aging Exacerbates Development Of Cerebral Microbleeds In A Mouse Model, Rachita K. Sumbria, Mher Mahoney Grigoryan, Vitaly Vasilevko, Annlia Paganini-Hill, Kelley Kilday, Ronald Kim, David H. Cribbs, Mark J. Fisher

Pharmacy Faculty Articles and Research

Background: Cerebral microhemorrhages (CMH) are commonly found in the aging brain. CMH are also the neuropathological substrate of cerebral microbleeds (CMB), demonstrated on brain MRI. Recent studies demonstrate the importance of systemic inflammation in CMH development, but the relationships among inflammation, aging, and CMH development are not well-defined. In the current study, we hypothesized that the pathogenesis of inflammation-induced CMH in mice differs by age.

Methods: We studied young (3 months, n = 20) and old (18 months, n = 25) C57BL/6 mice injected with low-dose lipopolysaccharide (LPS; 1 mg/kg, i.p.) or saline at 0, 6, and 24 …


Effects Of Phosphodiesterase 3a Modulation On Murine Cerebral Microhemorrhages, Rachita K. Sumbria, Vitaly Vasilevko, Mher Mahoney Grigoryan, Annlia Paganini-Hill, Ronald Kim, David H. Cribbs, Mark J. Fisher Jun 2017

Effects Of Phosphodiesterase 3a Modulation On Murine Cerebral Microhemorrhages, Rachita K. Sumbria, Vitaly Vasilevko, Mher Mahoney Grigoryan, Annlia Paganini-Hill, Ronald Kim, David H. Cribbs, Mark J. Fisher

Pharmacy Faculty Articles and Research

Background: Cerebral microbleeds (CMB) are MRI-demonstrable cerebral microhemorrhages (CMH) which commonly coexist with ischemic stroke. This creates a challenging therapeutic milieu, and a strategy that simultaneously protects the vessel wall and provides anti-thrombotic activity is an attractive potential approach. Phosphodiesterase 3A (PDE3A) inhibition is known to provide cerebral vessel wall protection combined with anti-thrombotic effects. As an initial step in the development of a therapy that simultaneously treats CMB and ischemic stroke, we hypothesized that inhibition of the PDE3A pathway is protective against CMH development.

Methods: The effect of PDE3A pathway inhibition was studied in the inflammation-induced and …


A Murine Model Of Inflammation-Induced Cerebral Microbleeds, Rachita K. Sumbria, Mher Mahoney Grigoryan, Vitaly Vasilevko, Tatiana B. Krasieva, Miriam Scadeng, Alexandra K. Dvornikova, Annlia Paganini-Hill, Ronald Kim, David H. Cribbs, Mark J. Fisher Aug 2016

A Murine Model Of Inflammation-Induced Cerebral Microbleeds, Rachita K. Sumbria, Mher Mahoney Grigoryan, Vitaly Vasilevko, Tatiana B. Krasieva, Miriam Scadeng, Alexandra K. Dvornikova, Annlia Paganini-Hill, Ronald Kim, David H. Cribbs, Mark J. Fisher

Pharmacy Faculty Articles and Research

Background: Cerebral microhemorrhages (CMH) are tiny deposits of blood degradation products in the brain and are pathological substrates of cerebral microbleeds. The existing CMH animal models are β-amyloid-, hypoxic brain injury-, or hypertension-induced. Recent evidence shows that CMH develop independently of hypoxic brain injury, hypertension, or amyloid deposition and CMH are associated with normal aging, sepsis, and neurodegenerative conditions. One common factor among the above pathologies is inflammation, and recent clinical studies show a link between systemic inflammation and CMH. Hence, we hypothesize that inflammation induces CMH development and thus, lipopolysaccharide (LPS)-induced CMH may be an appropriate model to …