Open Access. Powered by Scholars. Published by Universities.®

Pharmaceutical Preparations Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Pharmaceutical Preparations

Effects Of Phosphodiesterase 3a Modulation On Murine Cerebral Microhemorrhages, Rachita K. Sumbria, Vitaly Vasilevko, Mher Mahoney Grigoryan, Annlia Paganini-Hill, Ronald Kim, David H. Cribbs, Mark J. Fisher Jun 2017

Effects Of Phosphodiesterase 3a Modulation On Murine Cerebral Microhemorrhages, Rachita K. Sumbria, Vitaly Vasilevko, Mher Mahoney Grigoryan, Annlia Paganini-Hill, Ronald Kim, David H. Cribbs, Mark J. Fisher

Pharmacy Faculty Articles and Research

Background: Cerebral microbleeds (CMB) are MRI-demonstrable cerebral microhemorrhages (CMH) which commonly coexist with ischemic stroke. This creates a challenging therapeutic milieu, and a strategy that simultaneously protects the vessel wall and provides anti-thrombotic activity is an attractive potential approach. Phosphodiesterase 3A (PDE3A) inhibition is known to provide cerebral vessel wall protection combined with anti-thrombotic effects. As an initial step in the development of a therapy that simultaneously treats CMB and ischemic stroke, we hypothesized that inhibition of the PDE3A pathway is protective against CMH development.

Methods: The effect of PDE3A pathway inhibition was studied in the inflammation-induced and …


Tumor Necrosis Factor Α Inhibition For Alzheimer's Disease, Rudy Chang, Kei-Lwun Yee, Rachita K. Sumbria May 2017

Tumor Necrosis Factor Α Inhibition For Alzheimer's Disease, Rudy Chang, Kei-Lwun Yee, Rachita K. Sumbria

Pharmacy Faculty Articles and Research

Tumor necrosis factor α (TNF-α) plays a central role in the pathophysiology of Alzheimer’s disease (AD). Food and Drug Administration–approved biologic TNF-α inhibitors are thus a potential treatment for AD, but they do not cross the blood-brain barrier. In this short review, we discuss the involvement of TNF-α in AD, challenges associated with the development of existing biologic TNF-α inhibitors for AD, and potential therapeutic strategies for targeting TNF-α for AD therapy.