Open Access. Powered by Scholars. Published by Universities.®

Other Chemicals and Drugs Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Other Chemicals and Drugs

Uplc-Ms/Ms Analysis Of The Michaelis-Menten Kinetics Of Cyp3a-Mediated Midazolam 1′- And 4-Hydroxylation In Rat Brain Microsomes, Devaraj Venkatapura Chandrashekar, Barent Dubois, Reza Mehvar Aug 2021

Uplc-Ms/Ms Analysis Of The Michaelis-Menten Kinetics Of Cyp3a-Mediated Midazolam 1′- And 4-Hydroxylation In Rat Brain Microsomes, Devaraj Venkatapura Chandrashekar, Barent Dubois, Reza Mehvar

Pharmacy Faculty Articles and Research

Midazolam (MDZ) is a short-acting benzodiazepine with rapid onset of action, which is metabolized by CYP3A isoenzymes to two hydroxylated metabolites, 1′-hydroxymidazolam and 4-hydroxymidazolam. The drug is also commonly used as a marker of CYP3A activity in the liver microsomes. However, the kinetics of CYP3A-mediated hydroxylation of MDZ in the brain, which contains much lower CYP content than the liver, have not been reported. In this study, UPLC-MS/MS and metabolic incubation methods were developed and validated for simultaneous measurement of low concentrations of both hydroxylated metabolites of MDZ in brain microsomes. Different concentrations of MDZ (1–500 µM) were incubated with …


Insights Into The Mechanisms Of Brain Endothelial Erythrophagocytosis, Jiahong Sun, Prema Vyas, Samar Mann, Annlia Paganini-Hill, Ane C. F. Nunes, Wei Ling Lau, David H. Cribbs, Mark J. Fisher, Rachita K. Sumbria Aug 2021

Insights Into The Mechanisms Of Brain Endothelial Erythrophagocytosis, Jiahong Sun, Prema Vyas, Samar Mann, Annlia Paganini-Hill, Ane C. F. Nunes, Wei Ling Lau, David H. Cribbs, Mark J. Fisher, Rachita K. Sumbria

Pharmacy Faculty Articles and Research

The endothelial cells which form the inner cellular lining of the vasculature can act as non-professional phagocytes to ingest and remove emboli and aged/injured red blood cells (RBCs) from circulation. We previously demonstrated an erythrophagocytic phenotype of the brain endothelium for oxidatively stressed RBCs with subsequent migration of iron-rich RBCs and RBC degradation products across the brain endothelium in vivo and in vitro, in the absence of brain endothelium disruption. However, the mechanisms contributing to brain endothelial erythrophagocytosis are not well defined, and herein we elucidate the cellular mechanisms underlying brain endothelial erythrophagocytosis. Murine brain microvascular endothelial cells (bEnd.3 …