Open Access. Powered by Scholars. Published by Universities.®

Other Chemicals and Drugs Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 6 of 6

Full-Text Articles in Other Chemicals and Drugs

Differential Expression And Activities Of Cytochrome P450 3a In The Rat Brain Microsomes And Mitochondria, Nouf Alshammari, Devaraj Venkatapura Chandrashekar, Mamunur Rashid, Reza Mehvar Nov 2022

Differential Expression And Activities Of Cytochrome P450 3a In The Rat Brain Microsomes And Mitochondria, Nouf Alshammari, Devaraj Venkatapura Chandrashekar, Mamunur Rashid, Reza Mehvar

Pharmacy Faculty Articles and Research

Midazolam (MDZ), a benzodiazepine derivative, is metabolized to 1′- and 4-hydroxylated metabolites (1′-OH-MDZ and 4-OH-MDZ, respectively) by cytochrome P450 3A (CYP3A). The purpose of this study was to investigate the CYP3A-mediated hydroxylation of MDZ in the rat brain mitochondria (MT). Brain microsomes (MC) and MT fractions were prepared from rats (n = 8) using differential and density gradient centrifugations, and the purity of the fractions was evaluated using VDAC1 and calreticulin as markers of MT and MC, respectively. The formation rates of 1′-OH-MDZ and 4-OH-MDZ in the rat brain MC and MT samples were determined using an LC–MS/MS method …


Biomedical Applications Of Protein Films And Polymeric Nanomaterials, Sanjana Gopalakrishnan Oct 2022

Biomedical Applications Of Protein Films And Polymeric Nanomaterials, Sanjana Gopalakrishnan

Doctoral Dissertations

Biomaterials are widely applied for the diagnosis and treatment of numerous diseases. In addition to fulfilling specific biological functions, biomaterials must also be non-toxic, biocompatible, and sterilizable to be regarded as safe-for-use. Polymers are excellent candidates for fabricating functional biomaterials due to their wide availability and varied properties and may be natural or synthetic. Polymer precursors are fabricated into coatings, foams, scaffolds, gels, composites, and nanomaterials for several biomedical applications. This dissertation focuses on two types of polymeric biomaterials – protein-based materials and synthetic polymeric nanoparticles. Proteins are biopolymers that naturally occur with a variety of structural and functional properties. …


Detailing The Effects Of Cbd On Parp And Survivin Expression In Ewing Sarcoma, Tyler Carter Oct 2022

Detailing The Effects Of Cbd On Parp And Survivin Expression In Ewing Sarcoma, Tyler Carter

Theses

Ewing sarcoma (ES) is an aggressive pediatric bone cancer with low five-year survival rates, particularly with recurrent disease because ES often becomes resistant to chemotherapy in these recurrences. Cannabidiol (CBD) has been identified as a potentially promising therapeutic for patients with ES. In other cancer types, CBD has demonstrated effects on two major proteins that contribute to chemotherapy resistance. The first, Poly (ADP-ribose) Polymerase I (PARP1), is a DNA damage repair enzyme that is overexpressed in recurrent ES. Though chemotherapy induces DNA damage in these cancer cells, the high levels of PARP1 facilitate repair of the DNA, allowing the mutated …


Controlling Myosin’S Function Via Interactions Between The Substrate And The Active Site, Mike K. Woodward Sep 2022

Controlling Myosin’S Function Via Interactions Between The Substrate And The Active Site, Mike K. Woodward

Doctoral Dissertations

Molecular motors, such as myosin, have evolved to transduce chemical energy from ATP into mechanical work to drive essential cellular processes, from muscle contraction to vesicular transport. Dysfunction in these motors is a root cause of many pathologies necessitating the application of intrinsic control over molecular motor function. We hypothesized that altering the myosin’s energy substrate via minor positional changes to the triphosphate portion of the molecule will allow us to control the protein and affect its in vitro function. We utilized positional isomers of a synthetic non-nucleoside triphosphate, azobenzene triphosphate, and assessed whether myosin’s force- and motion-generating capacity could …


Full- Versus Sub-Regional Quantification Of Amyloid-Beta Load On Mouse Brain Sections, Yuu Ohno, Riley Murphy, Matthew Choi, Weijun Ou, Rachita K. Sumbria May 2022

Full- Versus Sub-Regional Quantification Of Amyloid-Beta Load On Mouse Brain Sections, Yuu Ohno, Riley Murphy, Matthew Choi, Weijun Ou, Rachita K. Sumbria

Pharmacy Faculty Articles and Research

Extracellular accumulation of amyloid-beta (Aβ) plaques is one of the major pathological hallmarks of Alzheimer's disease (AD), and is the target of the only FDA-approved disease-modifying treatment for AD. Accordingly, the use of transgenic mouse models that overexpress the amyloid precursor protein and thereby accumulate cerebral Aβ plaques are widely used to model human AD in mice. Therefore, immunoassays, including enzyme-linked immunosorbent assay (ELISA) and immunostaining, commonly measure the Aβ load in brain tissues derived from AD transgenic mice. Though the methods for Aβ detection and quantification have been well established and documented, the impact of the size of the …


Structural And Computational Studies Of The Sars-Cov-2 Spike Protein Binding Mechanisms With Nanobodies: From Structure And Dynamics To Avidity-Driven Nanobody Engineering, Gennady M. Verkhivker Mar 2022

Structural And Computational Studies Of The Sars-Cov-2 Spike Protein Binding Mechanisms With Nanobodies: From Structure And Dynamics To Avidity-Driven Nanobody Engineering, Gennady M. Verkhivker

Mathematics, Physics, and Computer Science Faculty Articles and Research

Nanobodies provide important advantages over traditional antibodies, including their smaller size and robust biochemical properties such as high thermal stability, high solubility, and the ability to be bioengineered into novel multivalent, multi-specific, and high-affinity molecules, making them a class of emerging powerful therapies against SARS-CoV-2. Recent research efforts on the design, protein engineering, and structure-functional characterization of nanobodies and their binding with SARS-CoV-2 S proteins reflected a growing realization that nanobody combinations can exploit distinct binding epitopes and leverage the intrinsic plasticity of the conformational landscape for the SARS-CoV-2 S protein to produce efficient neutralizing and mutation resistant characteristics. Structural …