Open Access. Powered by Scholars. Published by Universities.®

Lipids Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 5 of 5

Full-Text Articles in Lipids

Observing Ceramide Pathway With Ferroptosis Via Mia Paca-2 Cell Treatment With Rsl3, Tazrin Rahman Jan 2023

Observing Ceramide Pathway With Ferroptosis Via Mia Paca-2 Cell Treatment With Rsl3, Tazrin Rahman

Auctus: The Journal of Undergraduate Research and Creative Scholarship

Composed of sphingosine and a fatty acid, ceramides are lipid molecules that serve as key metabolic signaling molecules of a sphingolipid pathway. While it acts as a precursor of complex sphingolipids, inducing ceramide generation can cause cell stress leading to subsequent cell death via apoptosis, necrosis, and even mitophagy. With regards to cell death specifically, a novel form of regulated cell death, ferroptosis, has recently been recognized of necrotic nature. Its unique morphological features and distinct properties have been observed over the last several decades; however, the molecular features were not identifiable as pure evidence of cell death, until recently …


Rare Degs1 Variant Significantly Alters De Novo Ceramide Synthesis Pathway, Nicholas B. Blackburn, Laura F. Michael, Peter J. Meikle, Juan M. Peralta, Marian Mosior, Scott Mcahren, Hai H. Bui, Melissa A. Bellinger, Corey Giles, Satish Kumar, Ana C. Leandro, Marcio Almeida, Jacquelyn M. Weir, Michael C. Mahaney, Thomas D. Dyer, Laura Almasy, John L. Vandeberg, Sarah Williams-Blangero, David C. Glahn, Ravindranath Duggirala, Mark Kowala, John Blangero, Joanne E. Curran Sep 2019

Rare Degs1 Variant Significantly Alters De Novo Ceramide Synthesis Pathway, Nicholas B. Blackburn, Laura F. Michael, Peter J. Meikle, Juan M. Peralta, Marian Mosior, Scott Mcahren, Hai H. Bui, Melissa A. Bellinger, Corey Giles, Satish Kumar, Ana C. Leandro, Marcio Almeida, Jacquelyn M. Weir, Michael C. Mahaney, Thomas D. Dyer, Laura Almasy, John L. Vandeberg, Sarah Williams-Blangero, David C. Glahn, Ravindranath Duggirala, Mark Kowala, John Blangero, Joanne E. Curran

School of Medicine Publications and Presentations

The de novo ceramide synthesis pathway is essential to human biology and health but genetic influences remain unexplored. The core function of this pathway is the generation of biologically active ceramide from its precursor, dihydroceramide. Dihydroceramides have diverse, often protective, biological roles; conversely, increased ceramide levels are biomarkers of complex disease. To explore the genetics of the ceramide synthesis pathway, we searched for deleterious nonsynonymous variants in the genomes of 1,020 Mexican Americans from extended pedigrees. We identified a Hispanic ancestry−specific rare functional variant, L175Q, in DEGS1, a key enzyme in the pathway that converts dihydroceramide to ceramide. This amino …


Serum Lipidomics Of Bovine Paratuberculosis: Disruption Of Choline-Containing Glycerophospholipids And Sphingolipids, Paul L. Wood, Erdal Erol, Glen F. Hoffsis, Margaret Steinman, Jeroen Debuck May 2018

Serum Lipidomics Of Bovine Paratuberculosis: Disruption Of Choline-Containing Glycerophospholipids And Sphingolipids, Paul L. Wood, Erdal Erol, Glen F. Hoffsis, Margaret Steinman, Jeroen Debuck

Veterinary Science Faculty Publications

Objectives: Bovine paratuberculosis is a devastating infection with Mycobacterium avium subspecies paratuberculosis that ultimately results in death from malnutrition. While the infection is characterized by a long (2–4 years) subclinical phase with immune activation, ultimately host defense mechanisms fail and the bacteria spread from the small intestine to other organs. Since both the gastrointestinal tract and liver are essential for the biosynthesis of structural glycerophospholipids, we investigated the circulating levels of these lipids in field infections and experimentally infected cattle.

Methods: Serum lipidomics of control and M. avium subspecies paratuberculosis–infected cattle were performed utilizing high-resolution mass spectrometry.

Results: In …


Increased Liver Tumor Formation In Neutral Sphingomyelinase-2-Deficient Mice, Liansheng Zhong, Ji Na Kong, Michael B. Dinkins, Silvia Leanhart, Zhihui Zhu, Stefka D. Spassieva, Haiyan Qin, Hsuan-Pei Lin, Ahmed Elsherbini, Rebecca Wang, Xue Jiang, Mariana N. Nikolova‑Karakashian, Guanghu Wang, Erhard Bieberich Mar 2018

Increased Liver Tumor Formation In Neutral Sphingomyelinase-2-Deficient Mice, Liansheng Zhong, Ji Na Kong, Michael B. Dinkins, Silvia Leanhart, Zhihui Zhu, Stefka D. Spassieva, Haiyan Qin, Hsuan-Pei Lin, Ahmed Elsherbini, Rebecca Wang, Xue Jiang, Mariana N. Nikolova‑Karakashian, Guanghu Wang, Erhard Bieberich

Physiology Faculty Publications

Sphingolipids are key signaling lipids in cancer. Genome-wide studies have identified neutral SMase-2 (nSMase2), an enzyme generating ceramide from SM, as a potential repressor for hepatocellular carcinoma. However, little is known about the sphingolipids regulated by nSMase2 and their roles in liver tumor development. We discovered growth of spontaneous liver tumors in 27.3% (9 of 33) of aged male nSMase2-deficient (fro/fro) mice. Lipidomics analysis showed a marked increase of SM in the tumor. Unexpectedly, tumor tissues presented with more than a 7-fold increase of C16-ceramide, concurrent with upregulation of ceramide synthase 5. The fro/fro liver tumor, …


Novel Function Of Ceramide For Regulation Of Mitochondrial Atp Release In Astrocytes, Ji-Na Kong, Zhihui Zhu, Yutaka Itokazu, Guanghu Wang, Michael B. Dinkins, Liansheng Zhong, Hsuan-Pei Lin, Ahmed Elsherbini, Silvia Leanhart, Xue Jiang, Haiyan Qin, Wenbo Zhi, Stefka D. Spassieva, Erhard Bieberich Jan 2018

Novel Function Of Ceramide For Regulation Of Mitochondrial Atp Release In Astrocytes, Ji-Na Kong, Zhihui Zhu, Yutaka Itokazu, Guanghu Wang, Michael B. Dinkins, Liansheng Zhong, Hsuan-Pei Lin, Ahmed Elsherbini, Silvia Leanhart, Xue Jiang, Haiyan Qin, Wenbo Zhi, Stefka D. Spassieva, Erhard Bieberich

Physiology Faculty Publications

We reported that amyloid β peptide (Aβ42) activated neutral SMase 2 (nSMase2), thereby increasing the concentration of the sphingolipid ceramide in astrocytes. Here, we show that Aβ42 induced mitochondrial fragmentation in wild-type astrocytes, but not in nSMase2-deficient cells or astrocytes treated with fumonisin B1 (FB1), an inhibitor of ceramide synthases. Unexpectedly, ceramide depletion was concurrent with rapid movements of mitochondria, indicating an unknown function of ceramide for mitochondria. Using immunocytochemistry and super-resolution microscopy, we detected ceramide-enriched and mitochondria-associated membranes (CEMAMs) that were codistributed with microtubules. Interaction of ceramide with tubulin was confirmed by cross-linking to N-[9-(3-pent-4-ynyl-3-H-diazirine-3-yl)-nonanoyl]-D-erythro-sphingosine …