Open Access. Powered by Scholars. Published by Universities.®

Biological Factors Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Biological Factors

Development Of An Analytical Method For Determination Of Lead And Cadmium In Biological Materials By Gfaas Using Escherichia Coli As Model Substance, Michelle Catherine Gende, Martina Schmeling May 2022

Development Of An Analytical Method For Determination Of Lead And Cadmium In Biological Materials By Gfaas Using Escherichia Coli As Model Substance, Michelle Catherine Gende, Martina Schmeling

Chemistry: Faculty Publications and Other Works

In this work, an analytical method was developed for the determination of lead and cadmium in biological samples using graphite furnace atomic absorption spectrometry. Escherichia coli (E. coli) was chosen as model substance for this purpose as it is readily available in most laboratories and can be quickly and easily prepared with a high turnaround rate. Four different sample preparation methods were initially evaluated with respect to percent recovery, limit of detection, and limit of quantification, and the most promising one was developed further. The final process involving microwave assisted digestion of the sample with nitric acid …


Characterization Of The Role That Alternative Ribonucleotide Reductases Play In Restoring Replication In The Presence Of Hydroxyurea In Escherichia Coli, Michael Sadek Jun 2015

Characterization Of The Role That Alternative Ribonucleotide Reductases Play In Restoring Replication In The Presence Of Hydroxyurea In Escherichia Coli, Michael Sadek

PSU McNair Scholars Online Journal

DNA replication is essential for cells to grow and divide. Ribonucleotide reductase is an essential enzyme that is responsible for the formation of deoxyribonucleotides that are used in DNA synthesis during replication. Hydroxyurea is a chemotherapeutic agent that is thought to work by specifically inhibiting the ribonuceotide reductase to prevent replication. However, recent studies in E. coli have shown that following an initial period of inhibition, DNA synthesis then recovers in the presence of hydroxyurea, suggesting that the mode of death and cellular response to hydroxyurea is more complex than originally proposed. The E.coli genome encodes three ribonucleotide reductases that …