Open Access. Powered by Scholars. Published by Universities.®

Amino Acids, Peptides, and Proteins Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 7 of 7

Full-Text Articles in Amino Acids, Peptides, and Proteins

Characterization Of Epithelial Growth Factor Transcripts Identified In Crotalus Atrox Venom, Ivan Lopez, Ying Jia Sep 2023

Characterization Of Epithelial Growth Factor Transcripts Identified In Crotalus Atrox Venom, Ivan Lopez, Ying Jia

Research Symposium

Epithelial Growth Factor (EGF) is the primary source in regeneration and stimulation of essential fibroblasts cells commonly found in epithelium. Studies have shown that snake venom components are becoming a growing factor in treating illnesses such as cancer, muscular dystrophy, chronic pain, blood pressure, blood clotting, etc. EGF in human cells contains a promising quaternary structure that can bind to snake venom metalloproteinases, proposing a means of activating biochemical responses through protein-protein interactions to regulate unwanted cellular functions. This supports promising research in achieving a greater understanding of regulation along cellular pathways through ligands, increasing the likelihood of targeting unwanted …


Cancer Cell-Specific Cgas/Sting Signaling Pathway In The Era Of Advancing Cancer Cell Biology, Vijay Kumar, Caitlin Bauer, John H. Stewart Jul 2023

Cancer Cell-Specific Cgas/Sting Signaling Pathway In The Era Of Advancing Cancer Cell Biology, Vijay Kumar, Caitlin Bauer, John H. Stewart

School of Graduate Studies Faculty Publications

Pattern-recognition receptors (PRRs) are critical to recognizing endogenous and exogenous threats to mount a protective proinflammatory innate immune response. PRRs may be located on the outer cell membrane, cytosol, and nucleus. The cGAS/STING signaling pathway is a cytosolic PRR system. Notably, cGAS is also present in the nucleus. The cGAS-mediated recognition of cytosolic dsDNA and its cleavage into cGAMP activates STING. Furthermore, STING activation through its downstream signaling triggers different interferon-stimulating genes (ISGs), initiating the release of type 1 interferons (IFNs) and NF-κB-mediated release of proinflammatory cytokines and molecules. Activating cGAS/STING generates type 1 IFN, which may prevent cellular transformation …


Targeting Cgas/Sting Signaling-Mediated Myeloid Immune Cell Dysfunction In Time, Vijay Kumar, Caitlin Bauer, John H. Stewart Jun 2023

Targeting Cgas/Sting Signaling-Mediated Myeloid Immune Cell Dysfunction In Time, Vijay Kumar, Caitlin Bauer, John H. Stewart

School of Graduate Studies Faculty Publications

Myeloid immune cells (MICs) are potent innate immune cells serving as first responders to invading pathogens and internal changes to cellular homeostasis. Cancer is a stage of altered cellular homeostasis that can originate in response to different pathogens, chemical carcinogens, and internal genetic/epigenetic changes. MICs express several pattern recognition receptors (PRRs) on their membranes, cytosol, and organelles, recognizing systemic, tissue, and organ-specific altered homeostasis. cGAS/STING signaling is a cytosolic PRR system for identifying cytosolic double-stranded DNA (dsDNA) in a sequence-independent but size-dependent manner. The longer the cytosolic dsDNA size, the stronger the cGAS/STING signaling activation with increased type 1 interferon …


Synthesis, Characterization And Biological Evaluation Of Polyarginine Derived Bone-Targeting Peptides, Gina L. Antuono May 2023

Synthesis, Characterization And Biological Evaluation Of Polyarginine Derived Bone-Targeting Peptides, Gina L. Antuono

Seton Hall University Dissertations and Theses (ETDs)

Osteoblast-targeting peptides in the treatment of bone disease is a new and novel approach to offering effective treatment of various cancers and can be used in bio-medical, medicinal chemistry and biotechnology applications. By targeting adhesion proteins produced by osteoblast cells, certain cancers which migrate and metastasize to the bone may be more effectively treated. An osteoblast-targeting peptide composed of Ser-Asp-Ser-Ser-Asp (SDSSD) which selectively binds to osteoblast cells via periostin has recently been identified. This peptide was functionalized with polyurethane, generating nanomicelles which encapsulated RNA for the therapeutic treatment of osteoporosis. This study has served as the basis for the research …


Modified Linear Peptides Effectively Silence Stat-3 In Breast Cancer And Ovarian Cancer Cell Lines, Dindyal Mandal, Sandeep Lohan, Muhammad Imran Sajid, Abdulelah Alhazza, Rakesh Kumar Tiwari, Keykavous Parang, Hamidreza Montazeri Aliabadi Feb 2023

Modified Linear Peptides Effectively Silence Stat-3 In Breast Cancer And Ovarian Cancer Cell Lines, Dindyal Mandal, Sandeep Lohan, Muhammad Imran Sajid, Abdulelah Alhazza, Rakesh Kumar Tiwari, Keykavous Parang, Hamidreza Montazeri Aliabadi

Pharmacy Faculty Articles and Research

RNA interference (RNAi) has drawn enormous attention as a powerful tool because of its capability to interfere with mRNA and protein production. However, designing a safe and efficient delivery system in RNAi therapeutics remains challenging. Herein, we have designed and synthesized several linear peptides containing tryptophan (W) and arginine (R) residues separated by the β-alanine (βA) spacer and attached to a lipophilic fatty acyl chain, cholesterol, or PEG. The peptide backbone sequences were: Ac-C-βA-βA-W4-βA-βA-R4-CO-NH2 and Ac-K-βA-βA-W4-βA-βA-R4-CO-NH2, with only a difference in N-terminal amino acid. The cysteine side chain in the first sequence was used for the conjugation with PEG2000 and …


Identification Of Novel Biosynthetic Gene Clusters Encoding For Polyketide/Nrps-Producing Chemotherapeutic Compounds From Marine-Derived Streptomyces Hygroscopicus From A Marine Sanctuary, Hannah Ruth Flaherty Jan 2023

Identification Of Novel Biosynthetic Gene Clusters Encoding For Polyketide/Nrps-Producing Chemotherapeutic Compounds From Marine-Derived Streptomyces Hygroscopicus From A Marine Sanctuary, Hannah Ruth Flaherty

Honors Theses and Capstones

Nearly one out of six deaths in 2020, around ten million people, were caused by cancer, making it a leading cause of death worldwide (WHO, 2022). This major public health issue, in addition to the rise of multidrug-resistant (MDR) pathogens, provides a high demand for the discovery of new pharmaceutical drugs to be used clinically to treat these conditions. The Streptomyces genus accounts to produce 39% of all microbial metabolites currently approved for human health, indicating its potential as an important species to study for antimicrobial and anticancer agents. The long linear genome of Streptomyces contains specialized sequences known as …


Protacs – A Novel And Rapidly Developing Field Of Targeted Protein Degradation, Hannah R. Gatley Jan 2023

Protacs – A Novel And Rapidly Developing Field Of Targeted Protein Degradation, Hannah R. Gatley

Theses and Dissertations

There is a continued need for new technology and strategies for tackling cancer and other diseases, and within the current century a novel therapeutic strategy has emerged in the realm of targeted protein degradation called Proteolysis-Targeting Chimeras (PROTACs). This technology specifically targets and degrades disease-causing proteins via the ubiquitin-proteasome system, and has seen an explosion of research and intrigue in both academia and industry over the past two decades. The diversity of PROTAC classes based on the E3 ligase recruiting ligand and the target protein allows for a universal molecular structure that can be customized for a specific target and …