Open Access. Powered by Scholars. Published by Universities.®

Amino Acids, Peptides, and Proteins Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Amino Acids, Peptides, and Proteins

Expanding The Phenotype Associated With Naa10-Related N-Terminal Acetylation Deficiency., Chloé Saunier, Svein Isungset Støve, Bernt Popp, Bénédicte Gérard, Marina Blenski, Nicholas Ahmew, +Several Additional Authors Aug 2016

Expanding The Phenotype Associated With Naa10-Related N-Terminal Acetylation Deficiency., Chloé Saunier, Svein Isungset Støve, Bernt Popp, Bénédicte Gérard, Marina Blenski, Nicholas Ahmew, +Several Additional Authors

Pediatrics Faculty Publications

N-terminal acetylation is a common protein modification in eukaryotes associated with numerous cellular processes. Inherited mutations in NAA10, encoding the catalytic subunit of the major N-terminal acetylation complex NatA have been associated with diverse, syndromic X-linked recessive disorders, whereas de novo missense mutations have been reported in one male and one female individual with severe intellectual disability but otherwise unspecific phenotypes. Thus, the full genetic and clinical spectrum of NAA10 deficiency is yet to be delineated. We identified three different novel and one known missense mutation in NAA10, de novo in 11 females, and due to maternal germ …


Structure And Functions Of Angiotensinogen, Hong Lu, Lisa A. Cassis, Craig W. Vander Kooi, Alan Daugherty Jul 2016

Structure And Functions Of Angiotensinogen, Hong Lu, Lisa A. Cassis, Craig W. Vander Kooi, Alan Daugherty

Saha Cardiovascular Research Center Faculty Publications

Angiotensinogen (AGT) is the sole precursor of all angiotensin peptides. Although AGT is generally considered as a passive substrate of the renin–angiotensin system, there is accumulating evidence that the regulation and functions of AGT are intricate. Understanding the diversity of AGT properties has been enhanced by protein structural analysis and animal studies. In addition to whole-body genetic deletion, AGT can be regulated in vivo by cell-specific procedures, adeno-associated viral approaches and antisense oligonucleotides. Indeed, the availability of these multiple manipulations of AGT in vivo has provided new insights into the multifaceted roles of AGT. In this review, the combination of …