Open Access. Powered by Scholars. Published by Universities.®

Amino Acids, Peptides, and Proteins Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Amino Acids, Peptides, and Proteins

Host-Defense Piscidin Peptides As Antibiotic Adjuvants Against Clostridioides Difficile, Adenrele Oludiran, Areej Malik, Andriana C. Zourou, Yonghan Wu, Steven P. Gross, Albert Siryapon, Asia Poudel, Kwincy Alleyne, Savion Adams, David S. Courson, Myriam L. Cotten, Erin B. Purcell Jan 2024

Host-Defense Piscidin Peptides As Antibiotic Adjuvants Against Clostridioides Difficile, Adenrele Oludiran, Areej Malik, Andriana C. Zourou, Yonghan Wu, Steven P. Gross, Albert Siryapon, Asia Poudel, Kwincy Alleyne, Savion Adams, David S. Courson, Myriam L. Cotten, Erin B. Purcell

Chemistry & Biochemistry Faculty Publications

The spore-forming intestinal pathogen Clostridioides difficile causes multidrug resistant infection with a high rate of recurrence after treatment. Piscidins 1 (p1) and 3 (p3), cationic host defense peptides with micromolar cytotoxicity against C. difficile, sensitize C. difficile to clinically relevant antibiotics tested at sublethal concentrations. Both peptides bind to Cu2+ using an amino terminal copper and nickel binding motif. Here, we investigate the two peptides in the apo and holo states as antibiotic adjuvants against an epidemic strain of C. difficile. We find that the presence of the peptides leads to lower doses of …


The Effect Of Metalation On Antimicrobial Piscidins Imbedded In Normal And Oxidized Lipid Bilayers, Ana Dreab, Craig A. Bayse Jan 2023

The Effect Of Metalation On Antimicrobial Piscidins Imbedded In Normal And Oxidized Lipid Bilayers, Ana Dreab, Craig A. Bayse

Chemistry & Biochemistry Faculty Publications

Metalation of the N-terminal Amino Terminal Cu(II)- and Ni(II)-binding (ATCUN) motif may enhance the antimicrobial properties of piscidins. Molecular dynamics simulations of free and nickelated piscidins 1 and 3 (P1 and P3) were performed in 3 : 1 POPC/POPG and 2.6 : 1 : 0.4 POPC/POPG/aldo-PC bilayers (POPC, 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine: POPG, 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoglycerol; aldo-PC, 1-palmitoyl-2-(9′-oxo-nonanoyl)-sn-glycero-3-phosphocholine) bilayer models. Nickel(II) binding decreases the conformation dynamics of the ATCUN motif and lowers the charge of the N-terminus to allow it to embed deeper in the bilayer without significantly changing the overall depth due to interactions of the charged half-helix …