Open Access. Powered by Scholars. Published by Universities.®

Amino Acids, Peptides, and Proteins Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 4 of 4

Full-Text Articles in Amino Acids, Peptides, and Proteins

Regulation Of Tissue Factor Activity By Interaction With The First Pdz Domain Of Magi1, Mohammad A. Mohammad, Sophie Featherby, Camille Ettelaie Jan 2024

Regulation Of Tissue Factor Activity By Interaction With The First Pdz Domain Of Magi1, Mohammad A. Mohammad, Sophie Featherby, Camille Ettelaie

School of Medicine Faculty Publications

Background; Tissue factor (TF) activity is stringently regulated through processes termed encryption. Post-translational modification of TF and its interactions with various protein and lipid moieties allows for a multi-step de-encryption of TF and procoagulant activation. Membrane-associated guanylate kinase-with inverted configuration (MAGI) proteins are known to regulate the localisation and activity of a number of proteins including cell-surface receptors. Methods; The interaction of TF with MAGI1 protein was examined as a means of regulating TF activity. MDA-MB-231 cell line was used which express TF and MAGI1, and respond well to protease activated receptor (PAR)2 activation. Proximity ligation assay (PLA), co-immunoprecipitation and …


Myod-Skp2 Axis Boosts Tumorigenesis In Fusion Negative Rhabdomyosarcoma By Preventing Differentiation Through P57kip2 Targeting, Silvia Pomella, Matteo Cassandri, Lucrezia D’Archivio, Antonella Porrazzo, Cristina Cossetti, Doris Phelps, Clara Perrone, Michele Pezzella, Antonella Cardinale, Marco Wachtel, Sara Aloisi, David Milewski, Marta Colletti, Prethish Sreenivas, Zoë S. Walters, Giovanni Barillari, Angela Di Giannatale, Giuseppe Maria Milano, Cristiano De Stefanis, Rita Alaggio, Sonia Rodriguez-Rodriguez, Nadia Carlesso, Christopher R. Vakoc, Enrico Velardi, Beat W. Schafer, Ernesto Guccione, Susanne A. Gatz, Lucio Miele Dec 2023

Myod-Skp2 Axis Boosts Tumorigenesis In Fusion Negative Rhabdomyosarcoma By Preventing Differentiation Through P57kip2 Targeting, Silvia Pomella, Matteo Cassandri, Lucrezia D’Archivio, Antonella Porrazzo, Cristina Cossetti, Doris Phelps, Clara Perrone, Michele Pezzella, Antonella Cardinale, Marco Wachtel, Sara Aloisi, David Milewski, Marta Colletti, Prethish Sreenivas, Zoë S. Walters, Giovanni Barillari, Angela Di Giannatale, Giuseppe Maria Milano, Cristiano De Stefanis, Rita Alaggio, Sonia Rodriguez-Rodriguez, Nadia Carlesso, Christopher R. Vakoc, Enrico Velardi, Beat W. Schafer, Ernesto Guccione, Susanne A. Gatz, Lucio Miele

School of Medicine Faculty Publications

Rhabdomyosarcomas (RMS) are pediatric mesenchymal-derived malignancies encompassing PAX3/7-FOXO1 Fusion Positive (FP)-RMS, and Fusion Negative (FN)-RMS with frequent RAS pathway mutations. RMS express the master myogenic transcription factor MYOD that, whilst essential for survival, cannot support differentiation. Here we discover SKP2, an oncogenic E3-ubiquitin ligase, as a critical pro-tumorigenic driver in FN-RMS. We show that SKP2 is overexpressed in RMS through the binding of MYOD to an intronic enhancer. SKP2 in FN-RMS promotes cell cycle progression and prevents differentiation by directly targeting p27Kip1 and p57Kip2, respectively. SKP2 depletion unlocks a partly MYOD-dependent myogenic transcriptional program and strongly affects stemness and tumorigenic …


Genome Editing For Cystic Fibrosis, Guoshun Wang Jun 2023

Genome Editing For Cystic Fibrosis, Guoshun Wang

School of Medicine Faculty Publications

Cystic fibrosis (CF) is a monogenic recessive genetic disorder caused by mutations in the CF Transmembrane-conductance Regulator gene (CFTR). Remarkable progress in basic research has led to the discovery of highly effective CFTR modulators. Now ~90% of CF patients are treatable. However, these modulator therapies are not curative and do not cover the full spectrum of CFTR mutations. Thus, there is a continued need to develop a complete and durable therapy that can treat all CF patients once and for all. As CF is a genetic disease, the ultimate therapy would be in-situ repair of the genetic lesions in the …


Inhibition Of Ribosome Assembly Factor Pno1 By Crispr/Cas9 Technique Suppresses Lung Adenocarcinoma And Notch Pathway: Clinical Application, Sanjit K. Roy, Shivam Srivastava, Andrew Hancock, Anju Shrivastava, Jason Morvant, Sharmila Shankar, Rakesh K. Srivastava Jan 2023

Inhibition Of Ribosome Assembly Factor Pno1 By Crispr/Cas9 Technique Suppresses Lung Adenocarcinoma And Notch Pathway: Clinical Application, Sanjit K. Roy, Shivam Srivastava, Andrew Hancock, Anju Shrivastava, Jason Morvant, Sharmila Shankar, Rakesh K. Srivastava

School of Medicine Faculty Publications

Growth is crucially controlled by the functional ribosomes available in cells. To meet the enhanced energy demand, cancer cells re-wire and increase their ribosome biogenesis. The RNA-binding protein PNO1, a ribosome assembly factor, plays an essential role in ribosome biogenesis. The purpose of this study was to examine whether PNO1 can be used as a biomarker for lung adenocarcinoma and also examine the molecular mechanisms by which PNO1 knockdown by CRISPR/Cas9 inhibited growth and epithelial–mesenchymal transition (EMT). The expression of PNO1 was significantly higher in lung adenocarcinoma compared to normal lung tissues. PNO1 expression in lung adenocarcinoma patients increased with …