Open Access. Powered by Scholars. Published by Universities.®

Amino Acids, Peptides, and Proteins Commons

Open Access. Powered by Scholars. Published by Universities.®

Life Sciences

Mathematics, Physics, and Computer Science Faculty Articles and Research

Crystal structure

Publication Year

Articles 1 - 2 of 2

Full-Text Articles in Amino Acids, Peptides, and Proteins

Exploring Molecular Mechanisms Of Paradoxical Activation In The Braf Kinase Dimers: Atomistic Simulations Of Conformational Dynamics And Modeling Of Allosteric Communication Networks And Signaling Pathways, Amanda Tse, Gennady M. Verkhivker Nov 2016

Exploring Molecular Mechanisms Of Paradoxical Activation In The Braf Kinase Dimers: Atomistic Simulations Of Conformational Dynamics And Modeling Of Allosteric Communication Networks And Signaling Pathways, Amanda Tse, Gennady M. Verkhivker

Mathematics, Physics, and Computer Science Faculty Articles and Research

The recent studies have revealed that most BRAF inhibitors can paradoxically induce kinase activation by promoting dimerization and enzyme transactivation. Despite rapidly growing number of structural and functional studies about the BRAF dimer complexes, the molecular basis of paradoxical activation phenomenon is poorly understood and remains largely hypothetical. In this work, we have explored the relationships between inhibitor binding, protein dynamics and allosteric signaling in the BRAF dimers using a network-centric approach. Using this theoretical framework, we have combined molecular dynamics simulations with coevolutionary analysis and modeling of the residue interaction networks to determine molecular determinants of paradoxical activation. We …


Dancing Through Life: Molecular Dynamics Simulations And Network-Centric Modeling Of Allosteric Mechanisms In Hsp70 And Hsp110 Chaperone Proteins, Gabrielle Stetz, Gennady M. Verkhivker Nov 2015

Dancing Through Life: Molecular Dynamics Simulations And Network-Centric Modeling Of Allosteric Mechanisms In Hsp70 And Hsp110 Chaperone Proteins, Gabrielle Stetz, Gennady M. Verkhivker

Mathematics, Physics, and Computer Science Faculty Articles and Research

Hsp70 and Hsp110 chaperones play an important role in regulating cellular processes that involve protein folding and stabilization, which are essential for the integrity of signaling networks. Although many aspects of allosteric regulatory mechanisms in Hsp70 and Hsp110 chaperones have been extensively studied and significantly advanced in recent experimental studies, the atomistic picture of signal propagation and energetics of dynamics-based communication still remain unresolved. In this work, we have combined molecular dynamics simulations and protein stability analysis of the chaperone structures with the network modeling of residue interaction networks to characterize molecular determinants of allosteric mechanisms. We have shown that …