Open Access. Powered by Scholars. Published by Universities.®

Amino Acids, Peptides, and Proteins Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 6 of 6

Full-Text Articles in Amino Acids, Peptides, and Proteins

Strengths And Weaknesses Of Hybrid Tpr Technology For Obtaining Structural And Mechanistic Insights Into Tpr Proteins, Shanshan Yu Dec 2014

Strengths And Weaknesses Of Hybrid Tpr Technology For Obtaining Structural And Mechanistic Insights Into Tpr Proteins, Shanshan Yu

Theses and Dissertations (ETD)

Tetratricopeptide (TPR) repeats are a 34-residue helix-turn-helix motif that when repeated pack into a superhelical structure. TPR domains are frequently found mediating protein-protein interactions, often through a central groove. One protein complex bearing numerous TPR repeats is the Anaphase Promoting Complex (APC). The anaphase-promoting complex (APC) is a multi-subunit complex, which orchestrates mitotic cell cycles. APC is an E3 ligase in the ubiquitin cascade, and directs the 26S proteosome degradation of cell-cycle regulators. Throughout mitotic progression, proteins that are key regulators of the cell cycle are assembled with polyubiquitin chains by APC.

One domain of the human APC is comprised …


Ligand-Receptor Interactions For Supramolecular Disassembly With Applications In Screening And Drug Delivery, Diego Amado Torres Aug 2014

Ligand-Receptor Interactions For Supramolecular Disassembly With Applications In Screening And Drug Delivery, Diego Amado Torres

Doctoral Dissertations

Proteins have the capacity to bind specific sets of compounds known as ligands, these are small molecules with a recurrent theme in their molecular design that is a characteristic exploited here to (i) identify particular affinities of small molecules for proteins with the aim of using them as ligands, inhibitors, or targeting moieties in more complex systems by means of a methodology that screens small molecules based on protein affinity; (ii) decorate a self-assembling supramolecular system at different positions, making it responsive to a complementary protein with the aim of exploring differences in disassembly and sensitivity of the release of …


Endothelial And Smooth Muscle-Dependent Vascular Reactivity In Immature Arterialized Collateral Capillaries, Caitlin Koeroghlian Jun 2014

Endothelial And Smooth Muscle-Dependent Vascular Reactivity In Immature Arterialized Collateral Capillaries, Caitlin Koeroghlian

Biomedical Engineering

Peripheral arterial occlusive disease (PAOD) occurs due to the build up of atherosclerotic plaque and reduces blood flow to cause chronic ischemia. Patients with PAOD may experience intermittent claudication, or the pain in limb skeletal muscles due to a decease in blood flow. Collateral arteries can act as a natural bypass and improve blood flow to hypoxic tissue by creating an alternate route for blood to flow, but not all patients with PAOD have pre-existing collateral networks. Animal studies indicate that tissues without pre-existing collateral networks can form de novo collaterals from capillaries following occlusion of a feed artery. Unfortunately, …


Phage Display Library Screening For Psa-/Lo Prostate Cancer Cell-Binding Peptides, John R. Moore May 2014

Phage Display Library Screening For Psa-/Lo Prostate Cancer Cell-Binding Peptides, John R. Moore

Dissertations & Theses (Open Access)

Prostate cancer (PCa) is one of the leading malignancies affecting men worldwide. Our lab focuses on understanding the molecular mechanisms underlying prostate carcinogenesis and developing therapeutics that target the cells responsible for driving PCa and mediating therapy resistance. My master thesis research employs a phage display library screening technology aiming to identify peptides that preferentially home in to undifferentiated PCa cells, which our lab has previously demonstrated to be intrinsically resistant to castration.

There is now evidence that a population of cells in PCa possesses characteristics associated with stem cells; these cells are referred to as cancer stem cells (CSCs). …


Molecular Chaperone Tools For Use Against Neurodegenerative Diseases, Matthew Tinkham May 2014

Molecular Chaperone Tools For Use Against Neurodegenerative Diseases, Matthew Tinkham

Senior Honors Projects

A noted characteristic found in several neurodegenerative disorders, including Alzheimer’s Disease, Parkinson’s Disease, Huntington’s Disease and bovine spongiform encephalopathy, is the accumulation of amyloid plaques in the brain. Amyloid plaques contain deposits of fibrillar aggregates of misfolded proteins that disrupt normal functionality in neurons. Certain variants of these misfolded proteins are self-replicating; these self-replicating amyloids are termed prions (for infectious protein). We are interested in how protein misfolding contributes to amyloid formation and how molecular chaperone proteins can change the formation of amyloid deposits. Chaperone proteins function by catalyzing the proper folding of other proteins, the refolding of misfolded proteins, …


Anti-Gd2 Etoposide-Loaded Immunoliposomes For The Treatment Of Gd2 Positive Tumors, Brandon S. Brown May 2014

Anti-Gd2 Etoposide-Loaded Immunoliposomes For The Treatment Of Gd2 Positive Tumors, Brandon S. Brown

Dissertations & Theses (Open Access)

Systemic chemotherapeutics remain the standard of care for most malignancies even though they frequently suffer from narrow therapeutic index, poor serum solubility, and off-target effects. Monoclonal antibodies that specifically bind antigens overexpressed on many tumors such as the ganglioside, GD2, can be conjugated to drug-loaded liposomes to create a targeted drug delivery system. In this study, we have encapsulated etoposide, a topoisomerase inhibitor effective against a wide range of cancers, in surface modified liposomes decorated with anti-GD2 antibodies. We characterized the properties of the liposomes using a variety of methods including dynamic light scattering, electron microscopy, and Fourier transformed infrared …