Open Access. Powered by Scholars. Published by Universities.®

Respiratory System Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Respiratory System

Human Metapneumovirus Induces Reorganization Of The Actin Cytoskeleton For Direct Cell-To-Cell Spread, Farah El Najjar, Nicolás Cifuentes-Muñoz, Jing Chen, Haining Zhu, Ursula J. Buchholz, Carole L. Moncman, Rebecca Ellis Dutch Sep 2016

Human Metapneumovirus Induces Reorganization Of The Actin Cytoskeleton For Direct Cell-To-Cell Spread, Farah El Najjar, Nicolás Cifuentes-Muñoz, Jing Chen, Haining Zhu, Ursula J. Buchholz, Carole L. Moncman, Rebecca Ellis Dutch

Molecular and Cellular Biochemistry Faculty Publications

Paramyxovirus spread generally involves assembly of individual viral particles which then infect target cells. We show that infection of human bronchial airway cells with human metapneumovirus (HMPV), a recently identified paramyxovirus which causes significant respiratory disease, results in formation of intercellular extensions and extensive networks of branched cell-associated filaments. Formation of these structures is dependent on actin, but not microtubule, polymerization. Interestingly, using a co-culture assay we show that conditions which block regular infection by HMPV particles, including addition of neutralizing antibodies or removal of cell surface heparan sulfate, did not prevent viral spread from infected to new target cells. …


Dimethylarginine Dimethylaminohydrolase Ii Overexpression Attenuates Lps-Mediated Lung Leak In Acute Lung Injury, Saurabh Aggarwal, Christine M. Gross, Sanjiv Kumar, Christiana Dimitropoulou, Shruti Sharma, Boris A. Gorshkov, Supriya Sridhar, Qing Lu, Natalia V. Bogatcheva, Agnieszka J. Jezierska-Drutel, Rudolf Lucas, John D. Catravas, Stephen M. Black Jan 2014

Dimethylarginine Dimethylaminohydrolase Ii Overexpression Attenuates Lps-Mediated Lung Leak In Acute Lung Injury, Saurabh Aggarwal, Christine M. Gross, Sanjiv Kumar, Christiana Dimitropoulou, Shruti Sharma, Boris A. Gorshkov, Supriya Sridhar, Qing Lu, Natalia V. Bogatcheva, Agnieszka J. Jezierska-Drutel, Rudolf Lucas, John D. Catravas, Stephen M. Black

Bioelectrics Publications

Acute lung injury (ALI) is a severe hypoxemic respiratory insufficiency associated with lung leak, diffuse alveolar damage, inflammation, and loss of lung function. Decreased dimethylaminohydrolase (DDAH) activity and increases in asymmetric dimethylarginine (ADMA), together with exaggerated oxidative/nitrative stress, contributes to the development of ALI in mice exposed to LPS. Whether restoring DDAH function and suppressing ADMA levels can effectively ameliorate vascular hyperpermeability and lung injury in ALI is unknown, and was the focus of this study. In human lung microvascular endothelial cells, DDAH II overexpression prevented the LPS-dependent increase in ADMA, superoxide, peroxynitrite, and protein nitration. DDAH II also attenuated …


Bioengineered Lysozyme Reduces Bacterial Burden And Inflammation In A Murine Model Of Mucoid Pseudomonas Aeruginosa Lung Infection, Charlotte C. Teneback, Thomas C. Scanlon, Matthew J. Wargo, Jenna L. Bement, Karl E. Griswold, Laurie W. Leclair Aug 2013

Bioengineered Lysozyme Reduces Bacterial Burden And Inflammation In A Murine Model Of Mucoid Pseudomonas Aeruginosa Lung Infection, Charlotte C. Teneback, Thomas C. Scanlon, Matthew J. Wargo, Jenna L. Bement, Karl E. Griswold, Laurie W. Leclair

Dartmouth Scholarship

The spread of drug-resistant bacterial pathogens is a growing global concern and has prompted an effort to explore potential adjuvant and alternative therapies derived from nature's repertoire of bactericidal proteins and peptides. In humans, the airway surface liquid layer is a rich source of antibiotics, and lysozyme represents one of the most abundant and effective antimicrobial components of airway secretions. Human lysozyme is active against both Gram-positive and Gram-negative bacteria, ac