Open Access. Powered by Scholars. Published by Universities.®

Nervous System Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Nervous System

Defects In Fetal Mouth Movement And Pharyngeal Patterning Underlie Cleft Palate Caused By Retinoid Deficiency., Regina Friedl May 2019

Defects In Fetal Mouth Movement And Pharyngeal Patterning Underlie Cleft Palate Caused By Retinoid Deficiency., Regina Friedl

Electronic Theses and Dissertations

Cleft palate is a common birth defect. Etiologic mechanisms of palate cleft include defects in palate morphogenesis, mandibular growth, or spontaneous fetal mouth movement. Cleft palate linked to deficient fetal mouth movement has been demonstrated directly only in a single experimental model of loss of neurotransmission. Here, using retinoid deficient mouse embryos, we demonstrate directly for the first time that deficient fetal mouth movement and cleft palate occurs as a result of mis-patterned development of pharyngeal peripheral nerves and cartilages. Retinoid deficient embryos were generated by inactivation of retinol dehydrogenase 10 (Rdh10), which is critical for production of …


Spag17 Deficiency Impairs Neuronal Cell Differentiation In Developing Brain, Olivia J. Choi Jan 2019

Spag17 Deficiency Impairs Neuronal Cell Differentiation In Developing Brain, Olivia J. Choi

Theses and Dissertations

The development of the nervous system is a multi-level, time-sensitive process that relies heavily on cell differentiation. However, the molecular mechanisms that control brain development remain poorly understood. We generated a knockout (KO) mouse for the cilia associated gene Spag17. These animals develop hydrocephalus and enlarged ventricles consistent with the role of Spag17 in the motility of ependymal cilia. However, other phenotypes that cannot be explained by this role were also present. Recently, a mutation in Spag17 has been associated with brain malformations and severe intellectual disability in humans. Therefore, we hypothesized that Spag17 plays a crucial role in …