Open Access. Powered by Scholars. Published by Universities.®

Musculoskeletal System Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 7 of 7

Full-Text Articles in Musculoskeletal System

Local In Vivo Measures Of Muscle Lipid And Oxygen Consumption Change In Response To Combined Vitamin D Repletion And Aerobic Training In Older Adults, D. Travis Thomas, David M. Schnell, Maja Redzic, Mingjun Zhao, Hideat Abraha, Danielle Jones, Howard Brim, Guoqiang Yu Apr 2019

Local In Vivo Measures Of Muscle Lipid And Oxygen Consumption Change In Response To Combined Vitamin D Repletion And Aerobic Training In Older Adults, D. Travis Thomas, David M. Schnell, Maja Redzic, Mingjun Zhao, Hideat Abraha, Danielle Jones, Howard Brim, Guoqiang Yu

Health and Clinical Sciences Faculty Publications

Intramyocellular (IMCL), extramyocellular lipid (EMCL), and vitamin D deficiency are associated with muscle metabolic dysfunction. This study compared the change in [IMCL]:[EMCL] following the combined treatment of vitamin D and aerobic training (DAT) compared with vitamin D (D), aerobic training (AT), and control (CTL). Male and female subjects aged 60–80 years with a BMI ranging from 18.5–34.9 and vitamin D status of ≤ 32 ng/mL (25(OH)D) were recruited to randomized, prospective clinical trial double-blinded for supplement with a 2 × 2 factorial design. Cholecalciferol (Vitamin D3) (10,000 IU × 5 days/week) or placebo was provided for 13 weeks …


Immunohistochemical Identification Of Human Skeletal Muscle Macrophages, Kate Kosmac, Bailey D. Peck, R. Grace Walton, Jyothi Mula, Philip A. Kern, Marcas M. Bamman, Richard A. Dennis, Cale A. Jacobs, Christian Lattermann, Darren L. Johnson, Charlotte A. Peterson Jun 2018

Immunohistochemical Identification Of Human Skeletal Muscle Macrophages, Kate Kosmac, Bailey D. Peck, R. Grace Walton, Jyothi Mula, Philip A. Kern, Marcas M. Bamman, Richard A. Dennis, Cale A. Jacobs, Christian Lattermann, Darren L. Johnson, Charlotte A. Peterson

Physical Therapy Faculty Publications

Macrophages have well-characterized roles in skeletal muscle repair and regeneration. Relatively little is known regarding the role of resident macrophages in skeletal muscle homeostasis, extracellular matrix remodeling, growth, metabolism and adaptation to various stimuli including exercise and training. Despite speculation into macrophage contributions during these processes, studies characterizing macrophages in non-injured muscle are limited and methods used to identify macrophages vary. A standardized method for the identification of human resident skeletal muscle macrophages will aide in the characterization of these immune cells and allow for the comparison of results across studies. Here, we present an immunohistochemistry (IHC) protocol, validated by …


Transcriptional Profiling Reveals Extraordinary Diversity Among Skeletal Muscle Tissues, Erin E. Terry, Xiping Zhang, Christy Hoffmann, Laura D. Hughes, Scott A. Lewis, Jiajia Li, Matthew J. Wallace, Lance A. Riley, Collin M. Douglas, Miguel A. Gutierrez-Monreal, Nicholas F. Lahens, Ming C. Gong, Francisco H. Andrade, Karyn A. Esser, Michael E. Hughes May 2018

Transcriptional Profiling Reveals Extraordinary Diversity Among Skeletal Muscle Tissues, Erin E. Terry, Xiping Zhang, Christy Hoffmann, Laura D. Hughes, Scott A. Lewis, Jiajia Li, Matthew J. Wallace, Lance A. Riley, Collin M. Douglas, Miguel A. Gutierrez-Monreal, Nicholas F. Lahens, Ming C. Gong, Francisco H. Andrade, Karyn A. Esser, Michael E. Hughes

Physiology Faculty Publications

Skeletal muscle comprises a family of diverse tissues with highly specialized functions. Many acquired diseases, including HIV and COPD, affect specific muscles while sparing others. Even monogenic muscular dystrophies selectively affect certain muscle groups. These observations suggest that factors intrinsic to muscle tissues influence their resistance to disease. Nevertheless, most studies have not addressed transcriptional diversity among skeletal muscles. Here we use RNAseq to profile mRNA expression in skeletal, smooth, and cardiac muscle tissues from mice and rats. Our data set, MuscleDB, reveals extensive transcriptional diversity, with greater than 50% of transcripts differentially expressed among skeletal muscle tissues. We detect …


Acute Resistance Exercise Induces Sestrin2 Phosphorylation And P62 Dephosphorylation In Human Skeletal Muscle, Nina Zeng, Randall F. D'Souza, Vandre C. Figueiredo, James F. Markworth, Llion A. Roberts, Jonathan M. Peake, Cameron J. Mitchell, David Cameron-Smith Dec 2017

Acute Resistance Exercise Induces Sestrin2 Phosphorylation And P62 Dephosphorylation In Human Skeletal Muscle, Nina Zeng, Randall F. D'Souza, Vandre C. Figueiredo, James F. Markworth, Llion A. Roberts, Jonathan M. Peake, Cameron J. Mitchell, David Cameron-Smith

Center for Muscle Biology Faculty Publications

Sestrins (1, 2, 3) are a family of stress-inducible proteins capable of attenuating oxidative stress, regulating metabolism, and stimulating autophagy. Sequestosome1 (p62) is also a stress-inducible multifunctional protein acting as a signaling hub for oxidative stress and selective autophagy. It is unclear whether Sestrin and p62Ser403 are regulated acutely or chronically by resistance exercise (RE) or training (RT) in human skeletal muscle. Therefore, the acute and chronic effects of RE on Sestrin and p62 in human skeletal muscle were examined through two studies. In Study 1, nine active men (22.1 ± 2.2 years) performed a bout of single-leg strength …


Metformin To Augment Strength Training Effective Response In Seniors (Masters): Study Protocol For A Randomized Controlled Trial, Douglas E. Long, Bailey D. Peck, Jenny L. Martz, S. Craig Tuggle, Heather M. Bush, Gerald Mcgwin, Philip A. Kern, Marcas M. Bamman, Charlotte A. Peterson Apr 2017

Metformin To Augment Strength Training Effective Response In Seniors (Masters): Study Protocol For A Randomized Controlled Trial, Douglas E. Long, Bailey D. Peck, Jenny L. Martz, S. Craig Tuggle, Heather M. Bush, Gerald Mcgwin, Philip A. Kern, Marcas M. Bamman, Charlotte A. Peterson

Physical Therapy Faculty Publications

Background: Muscle mass and strength are strong determinants of a person’s quality of life and functional independence with advancing age. While resistance training is the most effective intervention to combat age-associated muscle atrophy (sarcopenia), the ability of older adults to increase muscle mass and strength in response to training is blunted and highly variable. Thus, finding novel ways to complement resistance training to improve muscle response and ultimately quality of life among older individuals is critical. The purpose of this study is to determine whether a commonly prescribed medication called metformin can be repurposed to improve the response to resistance …


Micrornas, Heart Failure, And Aging: Potential Interactions With Skeletal Muscle, Kevin A. Murach, John J. Mccarthy Mar 2017

Micrornas, Heart Failure, And Aging: Potential Interactions With Skeletal Muscle, Kevin A. Murach, John J. Mccarthy

Center for Muscle Biology Faculty Publications

MicroRNAs (miRNAs) are small noncoding RNAs that regulate gene expression by targeting mRNAs for degradation or translational repression. MiRNAs can be expressed tissue specifically and are altered in response to various physiological conditions. It has recently been shown that miRNAs are released into the circulation, potentially for the purpose of communicating with distant tissues. This manuscript discusses miRNA alterations in cardiac muscle and the circulation during heart failure, a prevalent and costly public health issue. A potential mechanism for how skeletal muscle maladaptations during heart failure could be mediated by myocardium-derived miRNAs released to the circulation is presented. An overview …


Muscle-Specific Loss Of Bmal1 Leads To Disrupted Tissue Glucose Metabolism And Systemic Glucose Homeostasis, Brianna D. Harfmann, Elizabeth Schroder, Maureen T. Kachman, Brian A. Hodge, Xiping Zhang, Karyn Esser Mar 2016

Muscle-Specific Loss Of Bmal1 Leads To Disrupted Tissue Glucose Metabolism And Systemic Glucose Homeostasis, Brianna D. Harfmann, Elizabeth Schroder, Maureen T. Kachman, Brian A. Hodge, Xiping Zhang, Karyn Esser

Center for Muscle Biology Faculty Publications

Background: Diabetes is the seventh leading cause of death in the USA, and disruption of circadian rhythms is gaining recognition as a contributing factor to disease prevalence. This disease is characterized by hyperglycemia and glucose intolerance and symptoms caused by failure to produce and/or respond to insulin. The skeletal muscle is a key insulin-sensitive metabolic tissue, taking up ~80 % of postprandial glucose. To address the role of the skeletal muscle molecular clock to insulin sensitivity and glucose tolerance, we generated an inducible skeletal muscle-specific Bmal1 −/− mouse (iMSBmal1 −/−).

Results: Progressive changes in body composition (decreases in …