Open Access. Powered by Scholars. Published by Universities.®

Musculoskeletal System Commons

Open Access. Powered by Scholars. Published by Universities.®

Sports Medicine

Immunohistochemistry

Publication Year

Articles 1 - 2 of 2

Full-Text Articles in Musculoskeletal System

Interleukin-1 Receptor Antagonist Modulates Inflammation And Scarring After Ligament Injury, Connie S. Chamberlain, Ellen M. Leiferman, Kayt E. Frisch, Sarah E. Duenwald-Kuehl, Stacey L. Brickson, William L. Murphy, Georffrey S. Baer, Ray Vanderby Jan 2014

Interleukin-1 Receptor Antagonist Modulates Inflammation And Scarring After Ligament Injury, Connie S. Chamberlain, Ellen M. Leiferman, Kayt E. Frisch, Sarah E. Duenwald-Kuehl, Stacey L. Brickson, William L. Murphy, Georffrey S. Baer, Ray Vanderby

Faculty Publications - Biomedical, Mechanical, and Civil Engineering

Ligaments have limited regenerative potential and as a consequence, repair is protracted and results in a mechanically inferior tissue more scar-like than native ligament. We previously reported that a single injection of interleukin-1 receptor antagonist (IL-1Ra) delivered at the time of injury, decreased the number of M2 macrophage-associated inflammatory cytokines. Based on these results, we hypothesized that IL-1Ra administered after injury and closer to peak inflammation (as would occur clinically), would more effectively decrease inflammation and thereby improve healing. Since IL-1Ra has a short half-life, we also investigated the effect of multiple injections. The objective of this study was to …


The Influence Of Macrophage Depletion On Ligament Healing, Connie S. Chamberlain, Ellen M. Leiferman, Kayt E. Frisch, Sijian Wang, Xipei Yang, Nico Van Rooijen, Geoff S. Baer, Stacey L. Brickson, Ray Vanderby Jan 2011

The Influence Of Macrophage Depletion On Ligament Healing, Connie S. Chamberlain, Ellen M. Leiferman, Kayt E. Frisch, Sijian Wang, Xipei Yang, Nico Van Rooijen, Geoff S. Baer, Stacey L. Brickson, Ray Vanderby

Faculty Publications - Biomedical, Mechanical, and Civil Engineering

Despite a complex cascade of cellular events to reconstruct damaged extracellular matrix (ECM), ligament healing results in a mechanically inferior, scar-like tissue. During normal healing, the number of macrophages significantly increases within the wound site. Then, granulation tissue expands into any residual, normal ligamentous tissue (creeping substitution), resulting in a larger region of healing, greater mechanical compromise, and an inefficient repair process. To study the effects of macrophages on the repair process, bilateral, surgical rupture of their medial collateral ligaments (MCLs) was done on rats. Treatment animals received liposome-encapsulated clodronate, 2 days before rupture to ablate phagocytosing macrophages. Ligaments were …