Open Access. Powered by Scholars. Published by Universities.®

Musculoskeletal System Commons

Open Access. Powered by Scholars. Published by Universities.®

Physiology

Mice, Inbred C57BL

Publication Year

Articles 1 - 2 of 2

Full-Text Articles in Musculoskeletal System

Reduced Skeletal Muscle Satellite Cell Number Alters Muscle Morphology After Chronic Stretch But Allows Limited Serial Sarcomere Addition, Matthew C. Kinney, Sudarshan Dayanidhi, Peter B. Dykstra, John J. Mccarthy, Charlotte A. Peterson, Richard L. Lieber Mar 2017

Reduced Skeletal Muscle Satellite Cell Number Alters Muscle Morphology After Chronic Stretch But Allows Limited Serial Sarcomere Addition, Matthew C. Kinney, Sudarshan Dayanidhi, Peter B. Dykstra, John J. Mccarthy, Charlotte A. Peterson, Richard L. Lieber

Physiology Faculty Publications

Introduction: Muscles add sarcomeres in response to stretch, presumably to maintain optimal sarcomere length. Clinical evidence from patients with cerebral palsy, who have both decreased serial sarcomere number and reduced satellite cells (SCs), suggests a hypothesis that SCs may be involved in sarcomere addition. Methods: A transgenic Pax7‐DTA mouse model underwent conditional SC depletion, and their soleii were then stretch‐immobilized to assess the capacity for sarcomere addition. Muscle architecture, morphology, and extracellular matrix (ECM) changes were also evaluated. Results: Mice in the SC‐reduced group achieved normal serial sarcomere addition in response to stretch. However, muscle fiber cross‐sectional …


Myonuclear Transcription Is Responsive To Mechanical Load And Dna Content But Uncoupled From Cell Size During Hypertrophy, Tyler J. Kirby, Rooshil M. Patel, Timothy S. Mcclintock, Esther E. Dupont-Versteegden, Charlotte A. Peterson, John J. Mccarthy Mar 2016

Myonuclear Transcription Is Responsive To Mechanical Load And Dna Content But Uncoupled From Cell Size During Hypertrophy, Tyler J. Kirby, Rooshil M. Patel, Timothy S. Mcclintock, Esther E. Dupont-Versteegden, Charlotte A. Peterson, John J. Mccarthy

Physiology Faculty Publications

Myofibers increase size and DNA content in response to a hypertrophic stimulus, thus providing a physiological model with which to study how these factors affect global transcription. Using 5-ethynyl uridine (EU) to metabolically label nascent RNA, we measured a sevenfold increase in myofiber transcription during early hypertrophy before a change in cell size and DNA content. The typical increase in myofiber DNA content observed at the later stage of hypertrophy was associated with a significant decrease in the percentage of EU-positive myonuclei; however, when DNA content was held constant by preventing myonuclear accretion via satellite cell depletion, both the number …