Open Access. Powered by Scholars. Published by Universities.®

Systems Biology Commons

Open Access. Powered by Scholars. Published by Universities.®

Genomics

Institution
Keyword
Publication Year
Publication
Publication Type
File Type

Articles 1 - 30 of 32

Full-Text Articles in Systems Biology

Methods And Tools To Improve Performance Of Plant Genome Analysis, Drew Ferrell Aug 2022

Methods And Tools To Improve Performance Of Plant Genome Analysis, Drew Ferrell

Theses and Dissertations

Multi -omics data analysis and integration facilitates hypothesis building toward an understanding of genes and pathway responses driven by environments. Methods designed to estimate and analyze gene expression, with regard to treatments or conditions, can be leveraged to understand gene-level responses in the cell. However, genes often interact and signal within larger structures such as pathways and networks. Complex studies guided toward describing dynamic genetic pathways and networks require algorithms or methods designed for inference based on gene interactions and related topologies. Classes of algorithms and methods may be integrated into generalized workflows for comparative genomics studies, as multi -omics …


Multi-Omic Systems Biological Analysis Of Host-Microbe Interactions, Piet Jones May 2022

Multi-Omic Systems Biological Analysis Of Host-Microbe Interactions, Piet Jones

Doctoral Dissertations

Systems biology offers the opportunity to understand the complex mechanisms of various biological phenomena. The wealth of data that is produced, at an increasing rate, provides the potential to meet this opportunity. Here we take an applied approach to integrate multiple omic level data sources in order to generate biologically relevant hypotheses. We apply a novel analysis pipeline to model both, in concert, the microbial and transcriptomic signature from COVID-19 positive patients. We show patients may suffer from an increased microbial burden, with an increased pathogen potential. Gene expression evidence further shows patients may exhibit a compromised barrier immunity, owing …


Investigation Of Arabidopsis Extremophyte Relatives, Schrenkiella Parvula And Eutrema Salsugineum Reveals Different Roads Leading To Salt Stress Tolerance, Kieu-Nga Thi Tran Nov 2021

Investigation Of Arabidopsis Extremophyte Relatives, Schrenkiella Parvula And Eutrema Salsugineum Reveals Different Roads Leading To Salt Stress Tolerance, Kieu-Nga Thi Tran

LSU Doctoral Dissertations

How plants adapt to salt stress has been a central question in plant biology for decades. Yet we have not been able to fully understand the molecular networks and genetic mechanisms underlying this complex trait. Most of the genetic work on salinity stress has focused on understanding salt stress responses in the leading, yet a salt-sensitive model Arabidopsis thaliana. With the recent availability of genomes for wild-relatives of A. thaliana, we can now investigate how naturally salt adapted plants may have evolved modified or novel molecular networks to adapt to salt stress. Therefore, my research utilizes a comparative …


Understanding Potassium Toxicity Stress Responses Of The Extremophyte Schrenkiella Parvula Using Systems Biology Approaches, Pramod Pantha Jul 2021

Understanding Potassium Toxicity Stress Responses Of The Extremophyte Schrenkiella Parvula Using Systems Biology Approaches, Pramod Pantha

LSU Doctoral Dissertations

Schrenkiella parvula is an extremophyte model closely related to Arabidopsis thaliana and Brassica crops. Its natural habitat includes shores of saline lakes in the Irano-Turanian region. It has adapted to grow in soils rich in multiple salts including Na+ and K+. I have investigated the genetic basis for high K+ tolerance in plants using S. parvula as a stress tolerant model compared to the premier plant model, Arabidopsis thaliana which is highly sensitive to salt stresses using physiological, ionomic, transcriptomic, and metabolomic approaches. Under high K+ stress, root system architecture changes significantly compared to control …


Impact Of Intratumor Heterogeneity And The Tumor Microenvironment In Shaping Tumor Evolution And Response To Therapy, Akash Mitra Jun 2021

Impact Of Intratumor Heterogeneity And The Tumor Microenvironment In Shaping Tumor Evolution And Response To Therapy, Akash Mitra

Dissertations & Theses (Open Access)

Intratumor heterogeneity (ITH) is a crucial challenge in cancer treatment. The genotypic and phenotypic heterogeneity underlying diverse cancer types leads to subclonal variation, which may result in mixed or failed response to therapy. The heterogeneity at the tumor level, along with the tumor microenvironment (TME), often shapes tumor evolution and ultimately clinical outcome. Given that modern treatment paradigms increasingly expose patients with metastatic disease to multiple treatment modalities through the course of their disease, there exists a need to characterize robust and predictive biomarkers of response to therapy. In order to accurately characterize tumor evolution, we need to account for …


Development Of In-Silico Pipelines For Identification And Characterization Of Biomarker Panels And Therapeutic Interventions In Gastro-Intestinal (Gi) Cancers, Pranita Atri May 2021

Development Of In-Silico Pipelines For Identification And Characterization Of Biomarker Panels And Therapeutic Interventions In Gastro-Intestinal (Gi) Cancers, Pranita Atri

Theses & Dissertations

Gastro-intestinal (GI) malignancies, including gastric, colorectal, and pancreatic cancers, have maintained their high overall mortality due to a lack of prognostic and diagnostic biomarkers and potential therapeutic modalities. While efforts have been made to improve both early detection and therapeutic interventions in these cancers, failure of conventional approaches have proven to be a big challenge, and alternate approaches are needed. Computational biology approaches owing to lesser time and more per target success rate offer a unique solution here. The current study explored the use of computational biology techniques to study the various aspects relating to GI malignancies. First, we sought …


Effects Of 4-Methylcyclohexanemethanol On Stress Response Pathway Regulators, In Saccharomyces Cerevisiae, Suk Lan Ser Jan 2021

Effects Of 4-Methylcyclohexanemethanol On Stress Response Pathway Regulators, In Saccharomyces Cerevisiae, Suk Lan Ser

Graduate Theses, Dissertations, and Problem Reports

Hydrotropes are small molecules capable of inducing liquid-liquid phase separation by altering the solubility and conformation states of organic compounds that are increasingly becoming important in organizing chemical reactions and regulating complexes. They prevent protein aggregation causing these proteins to form condensates. Mediator, a highly conserved multi-subunit complex, plays an important role in transcription. Med15, a subunit found within the tail domain of the Mediator complex, works with stress-induced transcription factors and is regulated by many kinases, including CDKs and the AMP kinase, Snf1. Living cells respond by changing molecular and cellular pathways when they are exposed to stressful conditions. …


Investigation Of Proliferation Suppressors In Genetic Fitness Screens, Walter Frank Lenoir Iv Dec 2020

Investigation Of Proliferation Suppressors In Genetic Fitness Screens, Walter Frank Lenoir Iv

Dissertations & Theses (Open Access)

Innovation of CRISPR gene-editing technology has provided scientists genome manipulation tools that allowed rapid advancement of scientific capabilities and thus improved our ability to systematically study mammalian genetic functional profiles. Genome-wide CRISPR knockout screens conducted in collections of human cell lines can knock out genes at multiple loci, and have provided new insights into functional roles for independent genes. This method has launched massive efforts in looking across genetic backgrounds for context specific genetic vulnerabilities within cancer. Much of the research effort thus far has been spent on optimizing phenotype distinctions between essential, genes required for cell fitness, and non-essential, …


A Context-Forward In Vivo Functional Genomics Platform For Target Discovery And Establishing Vulnerability Context In Pancreatic Cancer, Johnathon Rose, Johnathon Lynn Rose Dec 2020

A Context-Forward In Vivo Functional Genomics Platform For Target Discovery And Establishing Vulnerability Context In Pancreatic Cancer, Johnathon Rose, Johnathon Lynn Rose

Dissertations & Theses (Open Access)

Pancreatic ductal adenocarcinoma (PDAC) is a highly aggressive malignancy with a very poor patient prognosis (5-year survival of ≤ 7%). While transcriptional profiling has aided in the classification of this disease into at least two broader subtypes, this alone has so far been insufficient to inform on more nuanced patterns of oncogenic dependency. We hypothesized that a more comprehensive and granular characterization of PDAC disease diversity is required to establish relevant context for targeted therapy. To this end, we sought to establish an integrated platform to: i) more comprehensively characterize differential oncogenic signaling across our tumor models, and ii) establish …


Micom: Metagenome-Scale Modeling To Infer Metabolic Interactions In The Gut Microbiota., Christian Diener, Sean M Gibbons, Osbaldo Resendis-Antonio Jan 2020

Micom: Metagenome-Scale Modeling To Infer Metabolic Interactions In The Gut Microbiota., Christian Diener, Sean M Gibbons, Osbaldo Resendis-Antonio

Articles, Abstracts, and Reports

Compositional changes in the gut microbiota have been associated with a variety of medical conditions such as obesity, Crohn's disease, and diabetes. However, connecting microbial community composition to ecosystem function remains a challenge. Here, we introduce MICOM, a customizable metabolic model of the human gut microbiome. By using a heuristic optimization approach based on L2 regularization, we were able to obtain a unique set of realistic growth rates that corresponded well with observed replication rates. We integrated adjustable dietary and taxon abundance constraints to generate personalized metabolic models for individual metagenomic samples. We applied MICOM to a balanced cohort of …


The Host Gatekeeper: Using The Flagellar Pathway To Understand Symbiont Host Adaptation, Adam R. Pollio Jan 2020

The Host Gatekeeper: Using The Flagellar Pathway To Understand Symbiont Host Adaptation, Adam R. Pollio

Graduate Theses, Dissertations, and Problem Reports

The acquisition of microbial partners is a strategy used by a diverse group of arthropods to overcome ecological barriers that might normally make certain niches uninhabitable. The unique phylogenetic opportunities attainable from the natural experiment of the Sodalis-allied clade allow for better understanding of how molecular structures evolve through time. Here, we focus on the evolution of the flagellar synthesis pathway, due to its complexity and ability to diverge in response to ecological pressures. We used this molecular pathway and natural experiment to show that normal evolutionary outcomes associated with symbiosis (i.e., genome reduction) do not explain the predicted conservation …


The Exploration Of Nanotoxicological Copper And Interspecific Saccharomyces Hybrids, Matthew Joseph Winans Phd Jan 2020

The Exploration Of Nanotoxicological Copper And Interspecific Saccharomyces Hybrids, Matthew Joseph Winans Phd

Graduate Theses, Dissertations, and Problem Reports

Nanotechnology takes advantage of cellular biology’s natural nanoscale operations by interacting with biomolecules differently than soluble or bulk materials, often altering normal cellular processes such as metabolism or growth. To gain a better understanding of how copper nanoparticles hybridized on cellulose fibers called carboxymethyl cellulose (CMC) affected growth of Saccharomyces cerevisiae, the mechanisms of toxicity were explored. Multiple methodologies covering genetics, proteomics, metallomics, and metabolomics were used during this investigation. The work that lead to this dissertation discovered that these cellulosic copper nanoparticles had a unique toxicity compared to copper. Further investigation suggested a possible ionic or molecular mimicry …


Drivers And Consequences Of Carbon Use Efficiency - And Its Measurement In Soil, Grace Pold Oct 2019

Drivers And Consequences Of Carbon Use Efficiency - And Its Measurement In Soil, Grace Pold

Doctoral Dissertations

Soils serve as massive carbon sinks, but their ability to continue this ecological service is contingent on how the resident soil microbial community will respond to the ongoing climate crisis. One key dimension of the microbial response to warming is its carbon use efficiency (CUE), or the fraction of carbon taken up by an organism which is allocated to growth rather than respiration. However, the scientific community is still in the early stages of understanding the drivers, consequences - and even accurate measurements of - CUE. In this dissertation, I first quantified the variability of CUE and its responsiveness to …


Creating A Molecular Map Of The Pediatric Lung, Quinlen F. Marshall Sep 2019

Creating A Molecular Map Of The Pediatric Lung, Quinlen F. Marshall

Forum Lectures

The newborn lung undergoes vast biochemical and physiological changes during adaptation from the intrauterine to the extrauterine environment. Lung morphogenesis continues from birth into early childhood, mediated by dynamic gene expression and a diversity of pulmonary cell types that exhibit remarkable heterogeneity. (Whitsett, JA. et al. Physiol. Rev, 2019). Surprisingly, few studies have solely focused on human lung development during this critical period, and many current studies of lung maturation rely on adult, murine, or diseased samples, limiting their insights and applicability to longitudinal pediatric lung development. Understanding the molecular and physiological nuances of pulmonary development has important clinical relevance, …


Phylogenetic Trees And Networks Can Serve As Powerful And Complementary Approaches For Analysis Of Genomic Data, Christopher Blair, Cécile Ané Aug 2019

Phylogenetic Trees And Networks Can Serve As Powerful And Complementary Approaches For Analysis Of Genomic Data, Christopher Blair, Cécile Ané

Publications and Research

Genomic data have had a profound impact on nearly every biological discipline. In systematics and phylogenetics, the thousands of loci that are now being sequenced can be analyzed under the multispecies coalescent model (MSC) to explicitly account for gene tree discordance due to incomplete lineage sorting (ILS). However, the MSC assumes no gene flow post divergence, calling for additional methods that can accommodate this limitation. Explicit phylogenetic network methods have emerged, which can simultaneously account for ILS and gene flow by representing evolutionary history as a directed acyclic graph. In this point-of-view we highlight some of the strengths and limitations …


Temporal Gene Expression Of Mesenchymal Cells In The Pediatric Lung, Quinlen F. Marshall, Soumyaroop Bhattacharya, Gautam Bandyopadhyay, Ravi Misra, Thomas Mariani, Gloria Pryhuber Aug 2019

Temporal Gene Expression Of Mesenchymal Cells In The Pediatric Lung, Quinlen F. Marshall, Soumyaroop Bhattacharya, Gautam Bandyopadhyay, Ravi Misra, Thomas Mariani, Gloria Pryhuber

Chemistry Student Work

INTRODUCTION: The newborn lung undergoes vast biochemical and physiological changes during adaptation from the intrauterine to the extrauterine environment. Lung morphogenesis continues from birth into early childhood, mediated by dynamic gene expression and a diversity of pulmonary cell types (Whitsett, JA. et al. Physiol. Rev, 2019). Murine models demonstrate that pulmonary mesenchymal cells exhibit remarkable heterogeneity in function and morphology during development, however, confirmation of their role is lacking in human neonates and early childhood (Guo, M. et al. Nat. Comm, 2019). In addition, many current human genomic studies of lung maturation suffer from limited sample size, limiting …


Bioinformatic And Experimental Approaches For Deeper Metaproteomic Characterization Of Complex Environmental Samples, Ramsunder Mahadevan Iyer Dec 2017

Bioinformatic And Experimental Approaches For Deeper Metaproteomic Characterization Of Complex Environmental Samples, Ramsunder Mahadevan Iyer

Doctoral Dissertations

The coupling of high performance multi-dimensional liquid chromatography and tandem mass spectrometry for characterization of microbial proteins from complex environmental samples has paved the way for a new era in scientific discovery. The field of metaproteomics, which is the study of protein suite of all the organisms in a biological system, has taken a tremendous leap with the introduction of high-throughput proteomics. However, with corresponding increase in sample complexity, novel challenges have been raised with respect to efficient peptide separation via chromatography and bioinformatic analysis of the resulting high throughput data. In this dissertation, various aspects of metaproteomic characterization, including …


Development, Evaluation, And Application Of A Novel Error Correction Method For Next Generation Sequencing Data, Isaac Akogwu Dec 2017

Development, Evaluation, And Application Of A Novel Error Correction Method For Next Generation Sequencing Data, Isaac Akogwu

Dissertations

Tremendous evolvement in sequencing technologies and the vast availability of data due to decreasing cost of Next-Generation-Sequencing (NGS) has availed scientists the opportunity to address a wide variety of evolutionary and biological issues. NGS uses massively parallel technology to accelerate the process at the expense of accuracy and read length in comparison to earlier Sanger methods. Therefore, computational limitations exist in how much analysis and information can be gleaned from the data without performing some form of error correction.

Error correction process is laborious and consumes a lot of computational resources. Despite the existence of many NGS data error correction …


Itraq-Based Proteomics Analysis And Network Integration For Kernel Tissue Development In Maize, Long Zhang, Yongbin Dong, Qilei Wang, Chunguang Du, Wenwei Xiong, Xinyu Li, Sailan Zhu, Yuling Li Aug 2017

Itraq-Based Proteomics Analysis And Network Integration For Kernel Tissue Development In Maize, Long Zhang, Yongbin Dong, Qilei Wang, Chunguang Du, Wenwei Xiong, Xinyu Li, Sailan Zhu, Yuling Li

Department of Biology Faculty Scholarship and Creative Works

Grain weight is one of the most important yield components and a developmentally complex structure comprised of two major compartments (endosperm and pericarp) in maize (Zea mays L.), however, very little is known concerning the coordinated accumulation of the numerous proteins involved. Herein, we used isobaric tags for relative and absolute quantitation (iTRAQ)-based comparative proteomic method to analyze the characteristics of dynamic proteomics for endosperm and pericarp during grain development. Totally, 9539 proteins were identified for both components at four development stages, among which 1401 proteins were non-redundant, 232 proteins were specific in pericarp and 153 proteins were specific in …


Expansion Of And Reclassification Within The Family Lachnospiraceae, Kelly N. Haas Nov 2016

Expansion Of And Reclassification Within The Family Lachnospiraceae, Kelly N. Haas

Doctoral Dissertations

Many of the taxa in the family Lachnospiraceae are currently misclassified as Clostridium spp. Here attempt to rectify many of these issues, beginning with an in-depth genomic and physiologic analysis of Clostridium methoxybenzovorans, culminating in the assertion that is a heterotype of Clostridium indolis, followed by reclassification of the broader group in which this organism resides. We propose two novel genera, Lacriformis and Enterocloster, to reclassify this clade, this includes reclassification of Clostridium sphenoides, Clostridium indolis, Clostridium saccharolyticum, Clostridium celerecrescens, Clostridium xylanolyticum, Clostridium algidixylanolyticum, Clostridium aerotolerans, Clostridium amygdalinum, and …


Computational Identification Of Terpene Synthase Genes And Their Evolutionary Analysis, Qidong Jia May 2016

Computational Identification Of Terpene Synthase Genes And Their Evolutionary Analysis, Qidong Jia

Doctoral Dissertations

Terpenoids, the largest and most structurally and functionally diverse class of natural compounds on earth, are mostly synthesized by plants to be involved in various plant environment interactions. Some terpenoids are classified as primary metabolites essential for plant growth and development. Terpene synthases (TPSs), the key enzymes for terpenoid biosynthesis, are the major determinant of the tremendous diversity of terpenoid carbon skeletons. The TPS genes represent a mid-size family of about 30-100 functional genes in almost all major sequenced plant genomes. TPSs are also found in fungi and bacteria, but microbial TPS genes share low levels of sequence similarity and …


Bioregulatory Systems Medicine: An Innovative Approach To Integrating The Science Of Molecular Networks, Inflammation, And Systems Biology With The Patient's Autoregulatory Capacity?, Alyssa W Goldman, Yvonne Burmeister, Konstantin Cesnulevicius, Martha Herbert, Mary Kane, David Lescheid, Timothy Mccaffrey, Myron Schultz, Bernd Seilheimer, Alta Smit, Georges St Laurent, Brian Berman Aug 2015

Bioregulatory Systems Medicine: An Innovative Approach To Integrating The Science Of Molecular Networks, Inflammation, And Systems Biology With The Patient's Autoregulatory Capacity?, Alyssa W Goldman, Yvonne Burmeister, Konstantin Cesnulevicius, Martha Herbert, Mary Kane, David Lescheid, Timothy Mccaffrey, Myron Schultz, Bernd Seilheimer, Alta Smit, Georges St Laurent, Brian Berman

Medicine Faculty Publications

Bioregulatory systems medicine (BrSM) is a paradigm that aims to advance current medical practices. The basic scientific and clinical tenets of this approach embrace an interconnected picture of human health, supported largely by recent advances in systems biology and genomics, and focus on the implications of multi-scale interconnectivity for improving therapeutic approaches to disease. This article introduces the formal incorporation of these scientific and clinical elements into a cohesive theoretical model of the BrSM approach. The authors review this integrated body of knowledge and discuss how the emergent conceptual model offers the medical field a new avenue for extending the …


Comparative Genomics Of Microbial Chemoreceptor Sequence, Structure, And Function, Aaron Daniel Fleetwood Dec 2014

Comparative Genomics Of Microbial Chemoreceptor Sequence, Structure, And Function, Aaron Daniel Fleetwood

Doctoral Dissertations

Microbial chemotaxis receptors (chemoreceptors) are complex proteins that sense the external environment and signal for flagella-mediated motility, serving as the GPS of the cell. In order to sense a myriad of physicochemical signals and adapt to diverse environmental niches, sensory regions of chemoreceptors are frenetically duplicated, mutated, or lost. Conversely, the chemoreceptor signaling region is a highly conserved protein domain. Extreme conservation of this domain is necessary because it determines very specific helical secondary, tertiary, and quaternary structures of the protein while simultaneously choreographing a network of interactions with the adaptor protein CheW and the histidine kinase CheA. This dichotomous …


Identification Of Cell Signaling Pathway Regulated By Micrornas In Cancer Cells Using A Systems Biological Approach, Sangbae Kim Dec 2014

Identification Of Cell Signaling Pathway Regulated By Micrornas In Cancer Cells Using A Systems Biological Approach, Sangbae Kim

Dissertations & Theses (Open Access)

MicroRNAs (miRNAs) are single-stranded, non-coding RNA molecules that regulate gene expression via imperfect binding of the miRNA to specific sites in the 3' untranslated region of the mRNAs. Because prediction of miRNA targets is an essential step for understanding the functional roles of miRNAs, many computational approaches have been developed to identify miRNA targets. However, identifying targets remains challenging due to the inherent limitation of current prediction approaches based on imperfect complementarity between miRNA and its target mRNAs. To overcome these current limitations, we developed a novel correlation-based approach that is sequence independence to predict functional targets of miRNAs by …


Development Of An Experimental And Computational Platform For Enhanced Characterization Of Modified Peptides And Proteins In Environmental Proteomics, Ritin Sharma Aug 2014

Development Of An Experimental And Computational Platform For Enhanced Characterization Of Modified Peptides And Proteins In Environmental Proteomics, Ritin Sharma

Doctoral Dissertations

Over the last decade, mass spectrometry based proteomics has been established as the front-runner in systems-level protein expression studies. However, with the field progressing into research of more and more complex samples, novel challenges have been raised with respect to efficient protein extraction and computational matching. In this dissertation, various aspects in the proteomics workflow, including experimental and computational approaches, have been developed, optimized and systematically evaluated. In this work, some of the critical factors with respect to proteomics sample preparation, like available biomass, detergent removal methods, and intact protein fractionation to achieve deeper proteome measurements were evaluated. The presented …


Genetic Predictors Of Metabolic Side Effects Of Diuretic Therapy, Jorge L. Del Aguila Aug 2014

Genetic Predictors Of Metabolic Side Effects Of Diuretic Therapy, Jorge L. Del Aguila

Dissertations & Theses (Open Access)

Thiazide diuretics are a recommended first-line monotherapy for hypertension (i.e.SBP>140 mmHg or DBP>90 mmHg). Even so, diuretics are associated with adverse metabolic side effects, such as hyperlipidemia, hyperglycemia and hypokalemia which increase the risk of developing type II diabetes. This thesis used three analytical strategies to identify and quantify genetic factors that contribute to the development of adverse metabolic effects due to thiazide diuretic treatment. I performed a genome-wide association study (GWAS) and meta-analysis of the change in fasting plasma glucose and triglycerides in response to HCTZ from two different clinical trials: the Pharmacogenomic Evaluation of Antihypertensive Responses …


A Systems Biology Approach To Detect Eqtls Associated With Mirna And Mrna Co-Expression Networks In The Nucleus Accumbens Of Chronic Alcoholic Patients, Mohammed Mamdani Jan 2014

A Systems Biology Approach To Detect Eqtls Associated With Mirna And Mrna Co-Expression Networks In The Nucleus Accumbens Of Chronic Alcoholic Patients, Mohammed Mamdani

Theses and Dissertations

Alcohol Dependence (AD) is a chronic substance use disorder with moderate heritability (60%). Linkage and genome-wide association studies (GWAS) have implicated a number of loci; however, the molecular mechanisms underlying AD are unclear. Advances in systems biology allow genome-wide expression data to be integrated with genetic data to detect expression quantitative trait loci (eQTL), polymorphisms that regulate gene expression levels, influence phenotypes and are significantly enriched among validated genetic signals for many commonly studied traits including AD.

We integrated genome-wide mRNA and miRNA expression data with genotypic data from the nucleus accumbens (NAc), a major addiction-related brain region, of 36 …


Development And Application Of Mass Spectrometry-Based Proteomics To Generate And Navigate The Proteomes Of The Genus Populus, Paul Edward Abraham May 2013

Development And Application Of Mass Spectrometry-Based Proteomics To Generate And Navigate The Proteomes Of The Genus Populus, Paul Edward Abraham

Doctoral Dissertations

Historically, there has been tremendous synergy between biology and analytical technology, such that one drives the development of the other. Over the past two decades, their interrelatedness has catalyzed entirely new experimental approaches and unlocked new types of biological questions, as exemplified by the advancements of the field of mass spectrometry (MS)-based proteomics. MS-based proteomics, which provides a more complete measurement of all the proteins in a cell, has revolutionized a variety of scientific fields, ranging from characterizing proteins expressed by a microorganism to tracking cancer-related biomarkers. Though MS technology has advanced significantly, the analysis of complicated proteomes, such as …


Clustering With Exclusion Zones: Genomic Applications, Mark Segal, Yuanyuan Xiao, Fred Huffer Dec 2010

Clustering With Exclusion Zones: Genomic Applications, Mark Segal, Yuanyuan Xiao, Fred Huffer

Mark R Segal

Methods for formally evaluating the clustering of events in space or time, notably the scan statistic, have been richly developed and widely applied. In order to utilize the scan statistic and related approaches, it is necessary to know the extent of the spatial or temporal domains wherein the events arise. Implicit in their usage is that these domains have no “holes”—hereafter “exclusion zones”—regions in which events a priori cannot occur. However, in many contexts, this requirement is not met. When the exclusion zones are known, it is straightforward to correct the scan statistic for their occurrence by simply adjusting the …


Identification Of Yeast Transcriptional Regulation Networks Using Multivariate Random Forests, Yuanyuan Xiao, Mark Segal Dec 2008

Identification Of Yeast Transcriptional Regulation Networks Using Multivariate Random Forests, Yuanyuan Xiao, Mark Segal

Mark R Segal

The recent availability of whole-genome scale data sets that investigate complementary and diverse aspects of transcriptional regulation has spawned an increased need for new and effective computational approaches to analyze and integrate these large scale assays. Here, we propose a novel algorithm, based on random forest methodology, to relate gene expression (as derived from expression microarrays) to sequence features residing in gene promoters (as derived from DNA motif data) and transcription factor binding to gene promoters (as derived from tiling microarrays). We extend the random forest approach to model a multivariate response as represented, for example, by time-course gene expression …