Open Access. Powered by Scholars. Published by Universities.®

Animal Experimentation and Research Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Animal Experimentation and Research

Targeting Metabolic Alterations Associated With Smooth Muscle Α-Actin Pathogenic Variant Attenuates Moyamoya-Like Cerebrovascular Disease, Anita Kaw May 2023

Targeting Metabolic Alterations Associated With Smooth Muscle Α-Actin Pathogenic Variant Attenuates Moyamoya-Like Cerebrovascular Disease, Anita Kaw

Dissertations & Theses (Open Access)

Heterozygous pathogenic variants in ACTA2, encoding smooth muscle α-actin (α-SMA), predispose to thoracic aortic aneurysms and dissections. De novo missense variants disrupting ACTA2 arginine 179 (p.Arg179) cause a multisystemic disease termed smooth muscle dysfunction syndrome (SMDS), which is characterized by early onset thoracic aortic disease and moyamoya disease-like (MMD) cerebrovascular disease. The MMD-like cerebrovascular disease in SMDS patients is marked by bilateral steno-occlusive lesions in the distal internal carotid arteries (ICAs) and their branches. To study the molecular mechanisms that underlie the ACTA2 p.Arg179 variants, a smooth muscle-specific Cre-lox knock-in mouse model of the heterozygous Acta2 R179C variant, termed …


Targeting Plasma Membrane Phosphatidylserine Content To Inhibit Oncogenic Kras Function, Walaa E. Kattan Aug 2021

Targeting Plasma Membrane Phosphatidylserine Content To Inhibit Oncogenic Kras Function, Walaa E. Kattan

Dissertations & Theses (Open Access)

The small GTPase KRAS, which is frequently mutated in human cancers, must be localized to the plasma membrane (PM) for biological activity. We recently showed that the KRAS C-terminal membrane anchor exhibits exquisite lipid-binding specificity for select species of phosphatidylserine (PtdSer). We therefore investigated whether reducing PM PtdSer content is sufficient to abrogate KRAS oncogenesis. Oxysterol-related binding proteins ORP5 and ORP8 exchange PtdSer synthesized in the ER for phosphatidylinositol-4-phosphate (PI4P) synthesized in the PM. We show that depletion of ORP5 or ORP8 reduced PM PtdSer levels, resulting in extensive mislocalization of KRAS from the PM. Concordantly, ORP5 or ORP8 depletion …