Open Access. Powered by Scholars. Published by Universities.®

Animal Experimentation and Research Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Animal Experimentation and Research

Bypassing The Blood-Brain Barrier: A Physical And Pharmacological Approach For The Treatment Of Metastatic Brain Tumors, Samuel A. Sprowls Jan 2021

Bypassing The Blood-Brain Barrier: A Physical And Pharmacological Approach For The Treatment Of Metastatic Brain Tumors, Samuel A. Sprowls

Graduate Theses, Dissertations, and Problem Reports

This dissertation (a) provided an in depth literature review of methods to disrupt the BBB/BTB and improve therapeutic distribution to brain tumors, (b) evaluated the use of azacitidine as a single agent therapy for the treatment of brain metastasis of breast cancer and a potential molecular mechanism by which brain tropic cells are sensitized to hypomethylating agents, (c) determined the impact cannabidiol has on P-glycoprotein mediated efflux at the blood-brain barrier and its potential for use as a single agent treatment for metastatic brain tumors, (d) developed a preclinical radiation therapy protocol for use in small animals and in vitro …


Mammary Extracellular Matrix Directs Differentiation Of Testicular And Embryonic Stem Cells To Form Functional Mammary Glands In Vivo, Robert D. Bruno, Jodie M. Fleming, Andrea L. George, Corinne A. Boulanger, Pepper Schedin, Gilbert H. Smith Jan 2017

Mammary Extracellular Matrix Directs Differentiation Of Testicular And Embryonic Stem Cells To Form Functional Mammary Glands In Vivo, Robert D. Bruno, Jodie M. Fleming, Andrea L. George, Corinne A. Boulanger, Pepper Schedin, Gilbert H. Smith

Medical Diagnostics & Translational Sciences Faculty Publications

Previously, we demonstrated the ability of the normal mammary microenvironment (niche) to direct non-mammary cells including testicular and embryonic stem cells (ESCs) to adopt a mammary epithelial cell (MEC) fate. These studies relied upon the interaction of transplanted normal MECs with non-mammary cells within the mammary fat-pads of recipient mice that had their endogenous epithelium removed. Here, we tested whether acellular mammary extracellular matrix (mECM) preparations are sufficient to direct differentiation of testicular-derived cells and ESCs to form functional mammary epithelial trees in vivo. We found that mECMs isolated from adult mice and rats were sufficient to redirect testicular derived …