Open Access. Powered by Scholars. Published by Universities.®

Research Methods in Life Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Research Methods in Life Sciences

Focal Augmentation Of Somatostatin Interneuron Function And Subsequent Circuit Effects In Developmentally Malformed, Epileptogenic Cortex, Nicole Ekanem Jan 2020

Focal Augmentation Of Somatostatin Interneuron Function And Subsequent Circuit Effects In Developmentally Malformed, Epileptogenic Cortex, Nicole Ekanem

Theses and Dissertations

Drug-resistant epilepsy (DRE) is a common clinical sequela of developmental cortical malformations such as polymicrogyria. Unfortunately, much remains unknown about the aberrant GABA-mediated circuit alterations that underlie DRE's onset and persistence in this context. To address this knowledge gap, we utilized the transcranial freeze lesion model in optogenetic mice lines (Somatostatin (SST)-Cre or Parvalbumin (PV)-Cre x floxed channelrhodopsin-2) to dissect features of the SST, PV, and pyramidal neuron microcircuit that are potentially associated with DRE. Investigations took place within developmental microgyria’s known pathological substrate, the adjoined and epileptogenic paramicrogyral region (PMR). As well, microcircuit relationships within the previously unexplored range …


Molecular Targets Of Psychedelics And Their Role In Behavioral Models Of Hallucinogenic Action, Hiba Z. Vohra Jan 2019

Molecular Targets Of Psychedelics And Their Role In Behavioral Models Of Hallucinogenic Action, Hiba Z. Vohra

Theses and Dissertations

Psychedelics are a subset of hallucinogenic drugs that exert their characteristic effects through agonist activity at the serotonin receptor 2A (5-HT2A). In this study, I aimed to characterize the modulatory role of the metabotropic glutamate subtype 2 receptor (mGluR2) in the 5-HT2A-specific rodent model of hallucinogenic action, head-twitch response (HTR). Secondly, I aimed to explore if 5-HT2A agonist-induced deficits in prepulse inhibition (PPI) of the startle response, an additional model of hallucinogenic action, could be produced in mice. Though 5-HT2A agonist-induced PPI deficits, which represent interruptions in normal sensorimotor gating, have been described in …