Open Access. Powered by Scholars. Published by Universities.®

Plant Biology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 12 of 12

Full-Text Articles in Plant Biology

Identification And Characterization Of Isoflavone Reductase Family Members In Soybean, Negin Azizkhani Mar 2024

Identification And Characterization Of Isoflavone Reductase Family Members In Soybean, Negin Azizkhani

Electronic Thesis and Dissertation Repository

Soybean’s yield is threatened by Phytophthora sojae, a pathogen responsible for stem and root rot disease. Glyceollins, unique antimicrobial agents specific to soybeans in partially preventing P. sojae infection, are derived from the isoflavonoid branch of the general phenylpropanoid pathway. One pivotal enzyme exclusively involved in glyceollin synthesis in soybean is the isoflavone reductase (GmIFR), which catalyzes the 2'-hydroxydaidzein conversion to 2'-hydroxy-2,3-dihydrodaidzein as a precursor for glyceollin biosynthesis. To comprehensively identify all members of the GmIFR gene family within the soybean genome, keyword and blast protein searches were conducted, identifying 98 putative GmIFRs. Among these candidates, …


Characterization Of Acaricide Resistance, Plant-Mediated Rnai Against Two-Spotted Spider Mites (Tetranychus Urticae Koch), And Assessing Off- And Non-Target Effects, Hooman Hosseinzadeh Namin Oct 2017

Characterization Of Acaricide Resistance, Plant-Mediated Rnai Against Two-Spotted Spider Mites (Tetranychus Urticae Koch), And Assessing Off- And Non-Target Effects, Hooman Hosseinzadeh Namin

Electronic Thesis and Dissertation Repository

The two-spotted spider mite (TSSM), Tetranychus urticae (Koch), is one of the most damaging agricultural pests in the world. It feeds on over 150 crops, causing considerable yield losses in greenhouses and agricultural fields. Currently, using synthetic acaricides is the main method to control TSSM. However, it can develop resistance to acaricides with repeated exposure, and typically resistance can occur within two to four years. To understand the underlying mechanisms of spider mite adaptation to acaricides is an essential part of resistance management strategy. The resistance ratio of the pyridaben-selected strain compared with the pre-selection strain was estimated at greater …


Gatekeepers Of Nitrogen-Fixing Symbiosis: Cytokinin-Ethylene Crosstalk Regulates Symbiotic Interaction In Lotus Japonicus, Seyedehmandana Miri Apr 2017

Gatekeepers Of Nitrogen-Fixing Symbiosis: Cytokinin-Ethylene Crosstalk Regulates Symbiotic Interaction In Lotus Japonicus, Seyedehmandana Miri

Electronic Thesis and Dissertation Repository

Leguminous plants thrive under nitrogen-limited soil conditions because of their ability to symbiotically interact with nitrogen-fixing bacteria, known as rhizobia. In the presence of compatible strains of rhizobia, they develop specialized symbiotic organs, called root nodules, which host the bacteria and provide the appropriate conditions for symbiotic nitrogen fixation to occur. The plant hormone cytokinin is the key endogenous trigger for the inception of root nodule organogenesis. In the model legume Lotus japonicus, analysis of the cytokinin receptor gene Lotus histidine kinase 1 (Lhk1) showed that it is required and also sufficient for the initiation of nodule …


Glucan Synthase-Like 8: A Key Player In Early Seedling Development In Arabidopsis, Behnaz Saatian Mar 2016

Glucan Synthase-Like 8: A Key Player In Early Seedling Development In Arabidopsis, Behnaz Saatian

Electronic Thesis and Dissertation Repository

Plants’ cell walls have unique chemical composition and features which enable them to play essential roles during plant development as shaping the cells and providing intercellular communication between adjacent cells. Polysaccharides, including callose, and glycoproteins are known as the main constituents of the cell wall. Callose, a linear β-1,3-glucan polymer, is accumulated at the cell plate during cytokinesis, in plasmodesmata, where it regulates cell-to-cell communication, in dormant phloem, where it seals sieve plates after mechanical injury and pathogen attack, and in male and female gametophytes. GLUCAN SYNTHASE-LIKE (GSL) genes in Arabidopsis comprise a family of 12 members. A …


Soybean Isoflavonoid Biosynthesis: Constituents And Circumstance At The Transcriptomic And Molecular Levels, Mehran Dastmalchi Jan 2015

Soybean Isoflavonoid Biosynthesis: Constituents And Circumstance At The Transcriptomic And Molecular Levels, Mehran Dastmalchi

Electronic Thesis and Dissertation Repository

Isoflavonoids are specialized metabolites, almost exclusive to the legume family of plants. They are actors in symbiosis with nitrogen-fixing bacteria and in plant stress response. Isoflavonoids are noted for their human health benefits. Isoflavonoid content in legumes has proven to be a complex trait. The goal of the present research is to determine the mechanisms underlying isoflavonoid biosynthesis in soybean.

The first approach was to unravel the genetic factors of isoflavonoid biosynthesis. A branch-point enzyme of the phenylpropanoid pathway, chalcone isomerase (CHI), catalyzes the reaction producing flavanones, the nucleus for many downstream metabolites such as isoflavonoids. I identified twelve soybean …


Arabidopsis Chromatin Remodeler Brahma: Its Functional Interplay With Polycomb Proteins And The Ref6 Histone Demethylase, Chenlong Li Dec 2014

Arabidopsis Chromatin Remodeler Brahma: Its Functional Interplay With Polycomb Proteins And The Ref6 Histone Demethylase, Chenlong Li

Electronic Thesis and Dissertation Repository

BRAHMA (BRM) is a SWI/SNF-type chromatin remodeling ATPase that plays an important role in regulation of gene expression. Tri-methylation of lysine 27 on histone H3 (H3K27me3) is a histone modification that is associated with transcriptionally repressed genes and catalyzed by Polycomb Group (PcG) proteins. BRM has been proposed to antagonize the function of PcG proteins but the underlying molecular mechanism is unclear. To understand how BRM regulates the function of PcG proteins during plant development, a genome-wide analysis of H3K27me3 in brm mutant was performed using chromatin immunoprecipitation followed by next generation sequencing (ChIP-seq). Loss of BRM leads to increased …


Characterization Of A Putative Activation Domain In The Hulk Gene Family, Christopher Doan Jul 2013

Characterization Of A Putative Activation Domain In The Hulk Gene Family, Christopher Doan

Electronic Thesis and Dissertation Repository

The HULK gene family participates in regulation of both flowering time and development in the plant Arabidopsis thaliana. The proteins encoded by these genes share conserved domain structures including a proline-rich region (PRR) in the carboxyl-terminus. Based on sequence analysis and the presence of a proline-rich domain, it has been suggested that the HULKs are putative transcription factors in which HUA2 is known to regulate several late-flowering genes: FLC, FLM and MAF2.

To investigate the putative transcriptional activation domain in the carboxyl-terminus of the HULKs, full-length HULKs and deletion constructs were 3-AT titrated in yeast-one hybrids. It …


Functional Characterization Of The Hua2 Gene Family In Arabidopsis Thaliana, Preetam Janakirama Feb 2013

Functional Characterization Of The Hua2 Gene Family In Arabidopsis Thaliana, Preetam Janakirama

Electronic Thesis and Dissertation Repository

HUA2 encodes a key developmental regulatory protein implicated in the coordination of induction and the maintenance of floral state in Arabidopsis. To gain further insight into the function of HUA2, I have conducted a series of studies aimed at elucidating the molecular function(s) of its individual domains. I show that the PWWP, RPR and CT-proline rich domains within HUA2 are required for the proper regulation of the flowering time phenotype. I also establish that HUA2 interacts with characterized splicing factors (FCA, AtPRP40, RBP45 and UBP1) through its CT-proline rich domain. In addition, I examine the overlap in function between HUA2 …


Sunergos1, A Lotus Japonicus Gene Required For Proper Accommodation Of Rhizobial Infection, Hwi Joong Yoon Jan 2013

Sunergos1, A Lotus Japonicus Gene Required For Proper Accommodation Of Rhizobial Infection, Hwi Joong Yoon

Electronic Thesis and Dissertation Repository

Here, I characterize a symbiotic mutant of Lotus japonicus, called sunergos1 (suner1), which originated from a har1-1 suppressor screen. I have shown that suner1 supports epidermal infection by rhizobia and initiates nodule primordia organogenesis as in wild-type. However, the infection process is temporarily stalled, such that infection threads fail to ramify within the root cortex and timely release of bacteria inside the nodule primordia cells does not occur. This symbiotic defect is ephemeral and with additional time, functional nodules are formed. Using a combined approach involving map-based cloning and next-generation sequencing, I have shown that the suner1 …


Har1 And Ljamp1 Dependent Regulation Of Root Architecture In Lotus Japonicus, Chong Sung Kim Sep 2012

Har1 And Ljamp1 Dependent Regulation Of Root Architecture In Lotus Japonicus, Chong Sung Kim

Electronic Thesis and Dissertation Repository

Here, I characterize a root-branching hypermorph of Lotus japonicus, called cluster root-like1 (crl1), which originated from a har1-1 suppressor screen. I have shown that the crl1 root phenotype is determined by two independently segregating recessive mutations, har1-1 and Ljamp1-1, with corresponding HAR1 and LjAMP1 encoding an LRR‑receptor-like kinase and a predicted homologue of the Arabidopsis ALTERED MERISTEM PROGRAM 1 protein, respectively. Unlike har1-1, the Ljamp1 mutation does not affect the symbiotic properties of L. japonicus Gifu but exerts a pleiotropic effect on shoot development. Root architecture, however, is regulated by a synergistic action of HAR1 …


Identification And Characterization Of The Arabidopsis Homolog Of The Yeast Trex-2 Complex, Gang Tian May 2012

Identification And Characterization Of The Arabidopsis Homolog Of The Yeast Trex-2 Complex, Gang Tian

Electronic Thesis and Dissertation Repository

Nuclear pore complexes (NPCs) are vital to nuclear-cytoplasmic communication in eukaryotes. The yeast Thp1-Sac3-Cdc31-Sus1 complex, also known as the TREX-2 complex, is anchored to the NPC via the nucleoporin Nup1, and is essential for mRNA export. In this study, the Arabidopsis homolog of the yeast TREX-2 complex was discovered. Physical and functional evidence support the identification of the Arabidopsis orthologs of the yeast Thp1 and Nup1. Of three Sac3 Arabidopsis homologs, two are putative TREX-2 components. Surprisingly, none are required for mRNA export as is the yeast Sac3. Physical association with TREX-2 was observed for the two Cdc31 homologs, but …


Brassinosteroid-Mediated Stress Tolerance In Arabidopsis Thaliana, Tawhidur Rahman Oct 2011

Brassinosteroid-Mediated Stress Tolerance In Arabidopsis Thaliana, Tawhidur Rahman

Electronic Thesis and Dissertation Repository

Brassinosteroids (BRs) are a group of steroidal plant hormones that are essential for proper plant development and also promote stress tolerance. Without BRs, plants are dwarfs and infertile. To understand the molecular mechanisms underlying BR-mediated stress tolerance, global gene expression analysis of untreated and 24-epibrassinolide (EBR)-treated Arabidopsis thaliana seedlings under non-stress and heat stress (HS) conditions was carried out. Microarray data analysis indicated that stress-related genes were predominant within the EBR up-regulated gene data set. Furthermore, several of these genes were abscisic acid (ABA) and jasmonic acid (JA) related. Measurements of endogenous hormones showed significant increases in the levels ABA …