Open Access. Powered by Scholars. Published by Universities.®

Agronomy and Crop Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Agronomy and Crop Sciences

Molecular Genetic Analysis Of Drought Resistance And Productivity Traits Of Rice Genotypes, Yheni Dwiningsih Dec 2020

Molecular Genetic Analysis Of Drought Resistance And Productivity Traits Of Rice Genotypes, Yheni Dwiningsih

Graduate Theses and Dissertations

Rice (Oryza sativa L.) is the staple food for a majority of the world’s population, and uses 30% of the global fresh water during its life cycle. Drought at the reproductive stage is the most important abiotic stress factor limiting grain yield. The United States is the third largest exporter of rice, and Arkansas is the top rice-producing state. The Arkansas rice-growing region in the Lower Mississippi belt is among the 10 areas with the highest risk of water scarcity. Adapted U.S. rice cultivars were screened for drought resistant (DR) traits to find sources for breeding U.S. rice cultivars for …


Genome-Wide Identification And Analysis Of Heterotic Loci In Three Maize Hybrids, Hongjun Liu, Qin Wang, Mengjiao Chen, Yahui Ding, Xuerong Yang, Jie Liu, Xiaohan Li, Congcong Zhou, Qilin Tian, Yiqi Lu, Danlin Fan, Junpeng Shi, Lin Zhang, Congbin Kang, Mingfei Mingfei Sun, Fangyuan Li, Yujian Wu, Yongzhong Zhang, Baoshen Liu, Xiang Yu Zhao, Qi Feng, Jinliang Yang, Bin Han, Jinsheng Lai, Xian Sheng Zhang, Xuehui Huang Jan 2020

Genome-Wide Identification And Analysis Of Heterotic Loci In Three Maize Hybrids, Hongjun Liu, Qin Wang, Mengjiao Chen, Yahui Ding, Xuerong Yang, Jie Liu, Xiaohan Li, Congcong Zhou, Qilin Tian, Yiqi Lu, Danlin Fan, Junpeng Shi, Lin Zhang, Congbin Kang, Mingfei Mingfei Sun, Fangyuan Li, Yujian Wu, Yongzhong Zhang, Baoshen Liu, Xiang Yu Zhao, Qi Feng, Jinliang Yang, Bin Han, Jinsheng Lai, Xian Sheng Zhang, Xuehui Huang

Department of Agronomy and Horticulture: Faculty Publications

Heterosis, or hybrid vigour, is a predominant phenomenon in plant genetics, serving as the basis of crop hybrid breeding, but the causative loci and genes underlying heterosis remain unclear in many crops. Here, we present a large-scale genetic analysis using 5360 offsprings from three elite maize hybrids, which identifies 628 loci underlying 19 yield-related traits with relatively high mapping resolutions. Heterotic pattern investigations of the 628 loci show that numerous loci, mostly with complete–incomplete dominance (the major one) or overdominance effects (the secondary one) for heterozygous genotypes and nearly equal proportion of advantageous alleles from both parental lines, are the …


Leveraging Genome-Enabled Growth Models To Study Shoot Growth Responses To Water Deficit In Rice, Malachy T. Campbell, Alexandre Grondin, Harkamal Walia, Gota Morota Jan 2020

Leveraging Genome-Enabled Growth Models To Study Shoot Growth Responses To Water Deficit In Rice, Malachy T. Campbell, Alexandre Grondin, Harkamal Walia, Gota Morota

Department of Agronomy and Horticulture: Faculty Publications

lucidating genotype-by-environment interactions and partitioning its contribution to phenotypic variation remains a challenge for plant scientists. We propose a framework that utilizes genome-wide markers to model genotype-specific shoot growth trajectories as a function of time and soil water availability. A rice diversity panel was phenotyped daily for 21 d using an automated, high-throughput image-based, phenotyping platform that enabled estimation of daily shoot biomass and soil water content. Using these data, we modeled shoot growth as a function of time and soil water content, and were able to determine the time point where an inflection in the growth trajectory occurred. We …