Open Access. Powered by Scholars. Published by Universities.®

Physiology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 4 of 4

Full-Text Articles in Physiology

Experimental Manipulations Of The Organic Chemistry Of Seawater: Implications For Studies Of Energy Budgets In Marine Invertebrate Larvae, William Jaeckle Jan 1992

Experimental Manipulations Of The Organic Chemistry Of Seawater: Implications For Studies Of Energy Budgets In Marine Invertebrate Larvae, William Jaeckle

William Jaeckle

Correct measurement of changes in biomass and metabolic rates over time are two essential elements for the accurate construction of energy budgets for invertebrate larvae. Both components of larval energetics are altered by changes in the organic chemistry of the seawater. Axenic (bacteria-free) veliger larvae (88 µm shell length) of the bivalve Crassostrea gigas (Thunberg, 1795) had a 53% enhancement of their metabolic rate relative to control values (5.8 ± 0.6 pmol larva -1 h -1 , x¯ ± 1 SE) when exposed to seawater to which 1 µM glucose had been added. Gastrulae increased their rate of respiration by …


Information Content Of Prey Odor Plumes: What Do Foraging Leach's Storm Petrels Know?, Larry Clark, Pankaj Shah Jan 1992

Information Content Of Prey Odor Plumes: What Do Foraging Leach's Storm Petrels Know?, Larry Clark, Pankaj Shah

Larry Clark

Electrophysiological responses to odor have been recorded for concen­ trations as low as 0.01 ppm for Manx shearwaters Puffinus puffinus and Black-footed Albatrosses Diomedea nigripes, indicating that relative to most birds, procellariiforms have a keen sense of smell (Wenzel and Sieck 1972, cf.clark 1991; Clark and Smeraski 1990; Clark and Mason 1989). Such acuity is not unexpected, given the extensive development of the olfactory anatomy of these species (Bang and Wenzel 1986). Field observations indi­ cate that Procellariiformes use their sense of smell to locate food (Grubb 1972; Hutchison and Wenzel 1980; Lequette, Verheyden and Jouventin 1989). -_ However, it …


Avian Chemical Repellency: A Structure-Activity Approach And Implications, Pankaj Shah, Russell Mason, Larry Clark Jan 1992

Avian Chemical Repellency: A Structure-Activity Approach And Implications, Pankaj Shah, Russell Mason, Larry Clark

Larry Clark

Until recently, the discovery of avian sensory repellents has been empirical (MaRnn, AnAmR 'Inn l;qr\r FlR'l), Hm> !ilv!ilr, recent liltudilillil in our laboratory have shown that many avian repellents have similar perceptual and structural properties (Mason et al. 1989; Mason Clark and Shah 1991; Clark and Shah 1991; Clark, Shah and Mason 1991; Shah, Clark and Mason 1991). For example, methyl anthranilate, which has a grapy odor, is repel­ lent to birds (Kare and Pick, 1960). Ortho-aminoacetophenone has an odor and structure similar to that of methyl anthranilate, differing only in the substitution of a ketone for an ester group …


The Effects Of Copper, Cadmium And Zinc On Particle Filtration And Uptake Of Glycine In The Pacific Oyster Crassostrea Gigas, Wenyu Lin, Michael A. Rice, Paul K. Chien Dec 1991

The Effects Of Copper, Cadmium And Zinc On Particle Filtration And Uptake Of Glycine In The Pacific Oyster Crassostrea Gigas, Wenyu Lin, Michael A. Rice, Paul K. Chien

Michael A Rice

1. The filtration rate (volume of water completely cleared of collodial carbon per unit time) by control oysters is 36.60 ml/g hr ± 7.68 (sd).2. Filtration rates decrease with increasing concentrations of Cd2+ and Zn2+.3. In 8–16 mg/l Cu2+, filtration rates are significantly higher than the control, but in Cu2+ concentrations above 32 mg/l, filtration rates are lower than controls.4. Influx of 14C-glycine is characterized by Michaelis-Menten kinetics with Jmax and Kt values of 1.85 ± 0.097 μmol/g hr and 33.7 ± 4.6 μM respectively.5. The uptake rate of glycine from 1 μM solution is 37.79 μmol/g hr.6. In order …