Open Access. Powered by Scholars. Published by Universities.®

Toxicology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Toxicology

Single-Use Plastics And Covid-19: Scientific Evidence And Environmental Regulations, Robert C. Hale, Bk Song Jun 2020

Single-Use Plastics And Covid-19: Scientific Evidence And Environmental Regulations, Robert C. Hale, Bk Song

VIMS Articles

Waste plastics are a serious and growing environmental problem. Less than 10% of plastics are recycled, with most discarded in landfills, incinerated, or simply abandoned.1 Single-use plastics constitute about half of plastic waste. While most plastics are used and initially disposed of on land, much eventually enters aquatic ecosystems.2 Wildlife mortalities result from encounters (e.g., ingestion and entanglement) with large debris, including plastic bags. Such bags are excluded from many recycling programs, as they can entangle machinery. Most plastics do not readily biodegrade in the environment. However, they can be embrittled by UV exposure and fragment into microplastics (mm) and …


Development Of A Hybrid Bayesian Network Model For Predicting Acute Fish Toxicity Using Multiple Lines Of Evidence, S. Jannicke Moe, Anders L. Madsen, Kristin A. Connors, Jane M. Rawlings, Scott E. Belanger, Wayne G. Landis, Raoul Wolf, Adam D. Lillicrap Feb 2020

Development Of A Hybrid Bayesian Network Model For Predicting Acute Fish Toxicity Using Multiple Lines Of Evidence, S. Jannicke Moe, Anders L. Madsen, Kristin A. Connors, Jane M. Rawlings, Scott E. Belanger, Wayne G. Landis, Raoul Wolf, Adam D. Lillicrap

IETC Publications

A hybrid Bayesian network (BN) was developed for predicting the acute toxicity of chemicals to fish, using data from fish embryo toxicity (FET) testing in combination with other information. This model can support the use of FET data in a Weight-of-Evidence (WOE) approach for replacing the use of juvenile fish. The BN predicted correct toxicity intervals for 69%–80% of the tested substances. The model was most sensitive to components quantified by toxicity data, and least sensitive to components quantified by expert knowledge. The model is publicly available through a web interface. Further development of this model should include additional lines …