Open Access. Powered by Scholars. Published by Universities.®

Pharmacology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Pharmacology

Type I Topoisomerases As Potential Targets For Therapeutics, Ahmed Seddek Jun 2021

Type I Topoisomerases As Potential Targets For Therapeutics, Ahmed Seddek

FIU Electronic Theses and Dissertations

DNA topoisomerases are universal enzymes that control the topological features of DNA in all forms of life. This study aims to find potential inhibitors of some of the DNA topoisomerases in bacteria and humans that can be developed into potential therapeutics.

The first aim of this study is to find potential inhibitors of bacterial topoisomerase I that can be developed into antibiotics. There is an urgent need to develop novel antibiotics to overcome the world-wide health crisis of antimicrobial resistance. Virtual screening and biochemical assays were combined to screen thousands of compounds for potential inhibitors of bacterial topoisomerase I. NSC76027 …


Abc Transporters In Glioblastoma: Anticancer Drug Transport And Transporter Regulation At The Blood-Brain Barrier, Julia A. Schulz Jan 2021

Abc Transporters In Glioblastoma: Anticancer Drug Transport And Transporter Regulation At The Blood-Brain Barrier, Julia A. Schulz

Theses and Dissertations--Pharmacy

Glioblastoma is one of the deadliest cancers, with a median survival of only one year. Even after aggressive treatment consisting of surgical resection, radiation, and chemotherapy, most glioblastoma patients suffer from tumor recurrence within 6-9 months. One reason for treatment failure of anticancer drugs is the blood-brain barrier that protects the brain by impeding xenobiotic uptake from the blood. To this end, efflux transporters at the human blood-brain barrier, such as P-glycoprotein (ABCB1) and Breast Cancer Resistance Protein (ABCG2), prevent many compounds, including anticancer drugs, from entering the brain. Thus far, approaches to deliver anticancer drugs across the blood-brain barrier …