Open Access. Powered by Scholars. Published by Universities.®

Pharmacology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 11 of 11

Full-Text Articles in Pharmacology

Interactions Between Soft Nanoparticles And Mammalian Cells, Mitchell Raith May 2022

Interactions Between Soft Nanoparticles And Mammalian Cells, Mitchell Raith

Doctoral Dissertations

Nanoparticles have been of interest to the pharmaceutical industry since the 1980s. The first FDA approved nanoparticle-based therapies included liposomal anesthesia agents. Since then, the amount of FDA-approved nanoparticle therapies remains low. This is because nanoparticle-patient interactions can be very complex and are not well understood. Complicating factors also include increasing obesity rates among the patient population and many small animal pre-clinical trials are completed with healthy, lean animals. The biochemical differences between lean and obese patients prevents early studies from accurately predicting nanoparticle clinical behaviors. Many nanoparticles fail in trails. In this thesis, I aimed to uncover how nanoparticles …


Exploring Fused Deposition Modeling (Fdm) Three-Dimensional Printing Tablet Design Options For Pharmaceutical Dosage Forms, Guluzar Gorkem Buyukgoz Aug 2021

Exploring Fused Deposition Modeling (Fdm) Three-Dimensional Printing Tablet Design Options For Pharmaceutical Dosage Forms, Guluzar Gorkem Buyukgoz

Dissertations

This dissertation examines the use of Fused Deposition Modeling (FDM) based three-dimensional (3D) printing approach for developing patient-specific dosage forms and addressing related technical challenges in such drug delivery systems. The first main objective is to explore pharmaceutical tablet design options using novel FDM 3D printing technology as the drug delivery platform such that drug form and tablet properties are tailored by considering patient age-specific formulations and dissolution control. Of the five different design options, two proposed options meet the main objective of providing similar drug release, whereas the popular option of fixed drug concentration but differing tablet size could …


Evaluation Of Drug-Loaded Gold Nanoparticle Cytotoxicity As A Function Of Tumor Tissue Heterogeneity., Hunter Allan Miller Aug 2018

Evaluation Of Drug-Loaded Gold Nanoparticle Cytotoxicity As A Function Of Tumor Tissue Heterogeneity., Hunter Allan Miller

Electronic Theses and Dissertations

The inherent heterogeneity of tumor tissue presents a major challenge to nanoparticle-medicated drug delivery. This heterogeneity spans from the molecular to the cellular (cell types) and to the tissue (vasculature, extra-cellular matrix) scales. Here we employ computational modeling to evaluate therapeutic response as a function of vascular-induced tumor tissue heterogeneity. Using data with three-layered gold nanoparticles loaded with cisplatin, nanotherapy is simulated with different levels of tissue heterogeneity, and the treatment response is measured in terms of tumor regression. The results show that tumor vascular density non-trivially influences the nanoparticle uptake and washout, and the associated tissue response. The drug …


Radical Social Ecology As Deep Pragmatism: A Call To The Abolition Of Systemic Dissonance And The Minimization Of Entropic Chaos, Arielle Brender May 2018

Radical Social Ecology As Deep Pragmatism: A Call To The Abolition Of Systemic Dissonance And The Minimization Of Entropic Chaos, Arielle Brender

Student Theses 2015-Present

This paper aims to shed light on the dissonance caused by the superimposition of Dominant Human Systems on Natural Systems. I highlight the synthetic nature of Dominant Human Systems as egoic and linguistic phenomenon manufactured by a mere portion of the human population, which renders them inherently oppressive unto peoples and landscapes whose wisdom were barred from the design process. In pursuing a radical pragmatic approach to mending the simultaneous oppression and destruction of the human being and the earth, I highlight the necessity of minimizing entropic chaos caused by excess energy expenditure, an essential feature of systems that aim …


Eicosapentaenoic Acid (Epa) From Porphyridium Cruentum: Increasing Growth And Productivity Of The Microalgae For Pharmaceutical Products, Maryam Asgharpour Dec 2015

Eicosapentaenoic Acid (Epa) From Porphyridium Cruentum: Increasing Growth And Productivity Of The Microalgae For Pharmaceutical Products, Maryam Asgharpour

Graduate Theses and Dissertations

One of the major nutritional requirements in our diet is an adequate intake of omega-3 specially eicosapentaenoic acid (EPA). In the present study, the effects of two temperatures (16°C & 20˚C) and light intensities (140 & 180µE/M2.S) and four nitrate levels (0.075, 0.3, 0.5 and 0.7g/L) on the cell growth and lipid productivity of Porphyridium cruentum, one of the most promising oil-rich species of microalgae, were investigated. A growth comparison was carried out using pure CO2 and 5% CO2/air. Additionally, the ratio of the fatty acids with omega-3 and omega-6 groups at various growth conditions were compared, since an appropriate …


Integrated Nanoscale Imaging And Spatial Recognition Of Biomolecules On Surfaces, Congzhou Wang Jan 2015

Integrated Nanoscale Imaging And Spatial Recognition Of Biomolecules On Surfaces, Congzhou Wang

Theses and Dissertations

Biomolecules on cell surfaces play critical roles in diverse biological and physiological processes. However, conventional bulk scale techniques are unable to clarify the density and distribution of specific biomolecules in situ on single, living cell surfaces at the micro or nanoscale. In this work, a single cell analysis technique based on Atomic Force Microscopy (AFM) is developed to spatially identify biomolecules and characterize nanomechanical properties on single cell surfaces. The unique advantage of these AFM-based techniques lies in the ability to operate in situ (in a non-destructive fashion) and in real time, under physiological conditions or controlled micro-environments.

First, AFM-based …


Development And Characterization Of An Autologous Whole Cell Breast Cancer Vaccine, Samantha Leigh Kurtz Dec 2014

Development And Characterization Of An Autologous Whole Cell Breast Cancer Vaccine, Samantha Leigh Kurtz

Graduate Theses and Dissertations

Approximately 40,000 women will die from breast cancer in the United States in 2014. About 90% of these deaths will be due to metastases, rather than the primary tumor and majority of metastases are due to the recurrence and progression of non-metastatic disease. Current adjuvant treatments, such as chemotherapy and radiation, have severe side effects and may result in overtreatment and drug resistance.

Since greater than 90% of patients are diagnosed between stages I-III and have minimal residual disease after treatment, there is an opportunity to treat patients with an autologous breast cancer vaccine. Autologous vaccines under development have a …


Spectroscopic Study Of The Inhibition Of Calcium Oxalate Calculi By Larrea Tridentata, Luis Alonso Pinales Jan 2010

Spectroscopic Study Of The Inhibition Of Calcium Oxalate Calculi By Larrea Tridentata, Luis Alonso Pinales

Open Access Theses & Dissertations

The causes of urolithiasis include such influences as diet, metabolic disorders, and genetic factors which have been documented as sources that aggravate urinary calculi depositions and aggregations, and, implicitly, as causes of urolithiasis. This study endeavors to detail the scientific mechanisms involved in calcium oxalate calculi formation, and, more importantly, their inhibition under growth conditions imposed by the traditional medicinal approach using the herbal extract, Larrea tridentata. The calculi were synthesized without and with Larrea tridentata infusion by employing the single diffusion gel technique. A visible decrease in calcium oxalate crystal growth with increasing amounts of Larrea tridentata herbal infusion …


Nanoengineered Templates For Controlled Delivery Of Bioactive Compounds, Nalinkanth Ghone Veerabadran Jul 2008

Nanoengineered Templates For Controlled Delivery Of Bioactive Compounds, Nalinkanth Ghone Veerabadran

Doctoral Dissertations

The significance of any drugs, therapeutic proteins, or any bioactive compounds, is based not only on their effects on diseases but also on how specifically, how readily, how controllable and how prolonged their effects on the disease without having any side effects. Thus the techniques involved in the drug encapsulation and its controlled release for a longer duration of time form one of the important processes of drug reformulation. In recent years nanoparticles have created overwhelming attention for delivering drugs by nanoencapsulation. The smaller size of nanoparticles has longer circulation time and higher cellular uptake when compared with larger size …


Drug Loading And Release From Polypeptide Multilayer Nanofilms, Yang Zhong Jan 2007

Drug Loading And Release From Polypeptide Multilayer Nanofilms, Yang Zhong

Doctoral Dissertations

Polypeptides, linear macromolecules, are formed from amino acid residues by linkage of peptide bonds. Proteins are polypeptides too, with more complex conformations contributing to specific functionalities. Disulfide bonds are very important to maintain the structure and functions of proteins, which will form between two cysteine (Cys) residues under oxidizing circumstance.

Cys containing polypeptides are designed and synthesized by F-moc (9-Fluorenylmethyloxycarbonyl) chemistry. The number and position of Cys residues can be controlled by amino acid sequences design and following peptide synthesis, which is important to gain insights on the nature of polyelectrolyte multilayer film assembly and stability.

Both commercial and designed …


Layer-By-Layer Self -Assembly For Enzyme And Dna Encapsulation And Delivery, Amish Patel Oct 2004

Layer-By-Layer Self -Assembly For Enzyme And Dna Encapsulation And Delivery, Amish Patel

Doctoral Dissertations

Thin wall microcapsules were formed via Layer-by-Layer Self-Assembly of alternate adsorption of oppositely charged polyelectrolyte on microcores. After the core dissolution, empty polymeric shells with 20–25 nm thick walls were obtained. These microcapsules were loaded with Myoglobin, Hemoglobin and Glucose Oxidase by opening capsule pores at low pH and closing them at higher pH. The native structure of the enzyme was not affected due to different treatments. Biocompatible nanoshells were also prepared for encasing DNA. Using the same Layer-by-Layer Self-Assembly approach nanoparticle were constructed containing DNA as one of the layers. The nanoparticles of different architecture were used to deliver …