Open Access. Powered by Scholars. Published by Universities.®

Pharmacology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Pharmacology

Sustained Sensitizing Effects Of Tumor Necrosis Factor Alpha On Sensory Nerves In Lung And Airways, Ruei-Lung Lin, Qihai Gu, Mehdi Khosravi, Lu-Yuan Lee Dec 2017

Sustained Sensitizing Effects Of Tumor Necrosis Factor Alpha On Sensory Nerves In Lung And Airways, Ruei-Lung Lin, Qihai Gu, Mehdi Khosravi, Lu-Yuan Lee

Physiology Faculty Publications

Tumor necrosis factor alpha (TNFα) plays a significant role in the pathogenesis of airway inflammatory diseases. Inhalation of aerosolized TNFα induced airway hyperresponsiveness accompanied by airway inflammation in healthy human subjects, but the underlying mechanism is not fully understood. We recently reported a series of studies aimed to investigate if TNFα elevates the sensitivity of vagal bronchopulmonary sensory nerves in a mouse model; these studies are summarized in this mini-review. Our results showed that intratracheal instillation of TNFα induced pronounced airway inflammation 24 hours later, as illustrated by infiltration of eosinophils and neutrophils and the release of inflammatory mediators and …


Intrathecal Administration Of Ayx2 Dna Decoy Produces A Long-Term Pain Treatment In Rat Models Of Chronic Pain By Inhibiting The Klf6, Klf9, And Klf15 Transcription Factors, Julien Mamet, Michael Klukinov, Scott Harris, Donald C. Manning, Simon Xie, Conrado Pascual, Bradley K. Taylor, Renee R. Donahue, David C. Yeomans Sep 2017

Intrathecal Administration Of Ayx2 Dna Decoy Produces A Long-Term Pain Treatment In Rat Models Of Chronic Pain By Inhibiting The Klf6, Klf9, And Klf15 Transcription Factors, Julien Mamet, Michael Klukinov, Scott Harris, Donald C. Manning, Simon Xie, Conrado Pascual, Bradley K. Taylor, Renee R. Donahue, David C. Yeomans

Physiology Faculty Publications

Background: Nociception is maintained by genome-wide regulation of transcription in the dorsal root ganglia—spinal cord network. Hence, transcription factors constitute a promising class of targets for breakthrough pharmacological interventions to treat chronic pain. DNA decoys are oligonucleotides and specific inhibitors of transcription factor activities. A methodological series of in vivo–in vitro screening cycles was performed with decoy/transcription factor couples to identify targets capable of producing a robust and long-lasting inhibition of established chronic pain. Decoys were injected intrathecally and their efficacy was tested in the spared nerve injury and chronic constriction injury models of chronic pain in rats using repetitive …